Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 117-144
Voir la notice de l'article provenant de la source EMS Press
We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V(x)∼∣x∣−α, 02, and K(x)∼∣x∣−β, β>0. Working in weighted Sobolev spaces, the existence of ground states vε belonging to W1,2(Rn) is proved under the assumption that σ(N+2)/(N−2) for some σ=σN,α,β. Furthermore, it is shown that vε are spikes concentrating at a minimum of A=VθK−2/(p−1), where θ=(p+1)/(p−1)−1/2.
Classification :
35-XX, 00-XX
Keywords: Nonlinear Schrödinger equations, weighted Sobolev spaces
Keywords: Nonlinear Schrödinger equations, weighted Sobolev spaces
@article{JEMS_2005_7_1_a5,
author = {Antonio Ambrosetti and Veronica Felli and Andrea Malchiodi},
title = {Ground states of nonlinear {Schr\"odinger} equations with potentials vanishing at infinity},
journal = {Journal of the European Mathematical Society},
pages = {117--144},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2005},
doi = {10.4171/jems/24},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/24/}
}
TY - JOUR AU - Antonio Ambrosetti AU - Veronica Felli AU - Andrea Malchiodi TI - Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity JO - Journal of the European Mathematical Society PY - 2005 SP - 117 EP - 144 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/24/ DO - 10.4171/jems/24 ID - JEMS_2005_7_1_a5 ER -
%0 Journal Article %A Antonio Ambrosetti %A Veronica Felli %A Andrea Malchiodi %T Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity %J Journal of the European Mathematical Society %D 2005 %P 117-144 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/24/ %R 10.4171/jems/24 %F JEMS_2005_7_1_a5
Antonio Ambrosetti; Veronica Felli; Andrea Malchiodi. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 117-144. doi: 10.4171/jems/24
Cité par Sources :