Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 117-144.

Voir la notice de l'article provenant de la source EMS Press

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V(x)∼∣x∣−α, 02, and K(x)∼∣x∣−β, β>0. Working in weighted Sobolev spaces, the existence of ground states vε​ belonging to W1,2(Rn) is proved under the assumption that σ(N+2)/(N−2) for some σ=σN,α,β​. Furthermore, it is shown that vε​ are spikes concentrating at a minimum of A=VθK−2/(p−1), where θ=(p+1)/(p−1)−1/2.
DOI : 10.4171/jems/24
Classification : 35-XX, 00-XX
Keywords: Nonlinear Schrödinger equations, weighted Sobolev spaces
@article{JEMS_2005_7_1_a5,
     author = {Antonio Ambrosetti and Veronica Felli and Andrea Malchiodi},
     title = {Ground states of nonlinear {Schr\"odinger} equations with potentials vanishing at infinity},
     journal = {Journal of the European Mathematical Society},
     pages = {117--144},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2005},
     doi = {10.4171/jems/24},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/24/}
}
TY  - JOUR
AU  - Antonio Ambrosetti
AU  - Veronica Felli
AU  - Andrea Malchiodi
TI  - Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity
JO  - Journal of the European Mathematical Society
PY  - 2005
SP  - 117
EP  - 144
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/24/
DO  - 10.4171/jems/24
ID  - JEMS_2005_7_1_a5
ER  - 
%0 Journal Article
%A Antonio Ambrosetti
%A Veronica Felli
%A Andrea Malchiodi
%T Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity
%J Journal of the European Mathematical Society
%D 2005
%P 117-144
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/24/
%R 10.4171/jems/24
%F JEMS_2005_7_1_a5
Antonio Ambrosetti; Veronica Felli; Andrea Malchiodi. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 117-144. doi : 10.4171/jems/24. http://geodesic.mathdoc.fr/articles/10.4171/jems/24/

Cité par Sources :