Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1417-1428.

Voir la notice de l'article provenant de la source EMS Press

We derive new upper bounds for the densities of measurable sets in R_n_ which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions 2; . . . ; 24. This gives new lower bounds for the measurable chromatic number in dimensions 3; . . . ; 24. We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems of Furstenberg, Katznelson, Weiss, Bourgain and Falconer about sets avoiding many distances.
DOI : 10.4171/jems/236
Classification : 42-XX, 52-XX, 90-XX, 00-XX
Keywords: Measurable chromatic number, linear programming, autocorrelation function
@article{JEMS_2010_12_6_a4,
     author = {Fernando M\'ario de Oliveira Filho and Frank Vallentin},
     title = {Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$},
     journal = {Journal of the European Mathematical Society},
     pages = {1417--1428},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2010},
     doi = {10.4171/jems/236},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/236/}
}
TY  - JOUR
AU  - Fernando Mário de Oliveira Filho
AU  - Frank Vallentin
TI  - Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1417
EP  - 1428
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/236/
DO  - 10.4171/jems/236
ID  - JEMS_2010_12_6_a4
ER  - 
%0 Journal Article
%A Fernando Mário de Oliveira Filho
%A Frank Vallentin
%T Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$
%J Journal of the European Mathematical Society
%D 2010
%P 1417-1428
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/236/
%R 10.4171/jems/236
%F JEMS_2010_12_6_a4
Fernando Mário de Oliveira Filho; Frank Vallentin. Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1417-1428. doi : 10.4171/jems/236. http://geodesic.mathdoc.fr/articles/10.4171/jems/236/

Cité par Sources :