Noncommutative del Pezzo surfaces and Calabi-Yau algebras
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1371-1416
Cet article a éte moissonné depuis la source EMS Press
The hypersurface in C3 with an isolated quasi-homogeneous elliptic singularity of type E~r, r=6,7,8, has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type Er provides a semiuniversal Poisson deformation of that Poisson structure.
@article{JEMS_2010_12_6_a3,
author = {Pavel Etingof and Victor Ginzburg},
title = {Noncommutative del {Pezzo} surfaces and {Calabi-Yau} algebras},
journal = {Journal of the European Mathematical Society},
pages = {1371--1416},
year = {2010},
volume = {12},
number = {6},
doi = {10.4171/jems/235},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/235/}
}
TY - JOUR AU - Pavel Etingof AU - Victor Ginzburg TI - Noncommutative del Pezzo surfaces and Calabi-Yau algebras JO - Journal of the European Mathematical Society PY - 2010 SP - 1371 EP - 1416 VL - 12 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/235/ DO - 10.4171/jems/235 ID - JEMS_2010_12_6_a3 ER -
Pavel Etingof; Victor Ginzburg. Noncommutative del Pezzo surfaces and Calabi-Yau algebras. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1371-1416. doi: 10.4171/jems/235
Cité par Sources :