The Monge problem for strictly convex norms in $\mathbb{R}^d$
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1355-1369
Cet article a éte moissonné depuis la source EMS Press
We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of R_d_ under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.
Classification :
49-XX, 00-XX
Keywords: Monge–Kantorovich problem, optimal transport problem, cyclical monotonicity
Keywords: Monge–Kantorovich problem, optimal transport problem, cyclical monotonicity
@article{JEMS_2010_12_6_a2,
author = {Thierry Champion and Luigi De Pascale},
title = {The {Monge} problem for strictly convex norms in $\mathbb{R}^d$},
journal = {Journal of the European Mathematical Society},
pages = {1355--1369},
year = {2010},
volume = {12},
number = {6},
doi = {10.4171/jems/234},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/234/}
}
TY - JOUR
AU - Thierry Champion
AU - Luigi De Pascale
TI - The Monge problem for strictly convex norms in $\mathbb{R}^d$
JO - Journal of the European Mathematical Society
PY - 2010
SP - 1355
EP - 1369
VL - 12
IS - 6
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/234/
DO - 10.4171/jems/234
ID - JEMS_2010_12_6_a2
ER -
%0 Journal Article
%A Thierry Champion
%A Luigi De Pascale
%T The Monge problem for strictly convex norms in $\mathbb{R}^d$
%J Journal of the European Mathematical Society
%D 2010
%P 1355-1369
%V 12
%N 6
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/234/
%R 10.4171/jems/234
%F JEMS_2010_12_6_a2
Thierry Champion; Luigi De Pascale. The Monge problem for strictly convex norms in $\mathbb{R}^d$. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1355-1369. doi: 10.4171/jems/234
Cité par Sources :