Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1347-1353.

Voir la notice de l'article provenant de la source EMS Press

We show that phase space bounds on the eigenvalues of Schrödinger operators can be derived from universal bounds recently obtained by E. M. Harrell and the author via a monotonicity property with respect to coupling constants. In particular, we provide a new proof of sharp Lieb–Thirring inequalities.
DOI : 10.4171/jems/233
Classification : 81-XX, 35-XX, 00-XX
Keywords: Universal bounds for eigenvalues, spectral gap, phase space bounds, Lieb–Thirring inequalities, Schrödinger operators
@article{JEMS_2010_12_6_a1,
     author = {Joachim Stubbe},
     title = {Universal monotonicity of eigenvalue moments and sharp {Lieb{\textendash}Thirring} inequalities},
     journal = {Journal of the European Mathematical Society},
     pages = {1347--1353},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2010},
     doi = {10.4171/jems/233},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/233/}
}
TY  - JOUR
AU  - Joachim Stubbe
TI  - Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1347
EP  - 1353
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/233/
DO  - 10.4171/jems/233
ID  - JEMS_2010_12_6_a1
ER  - 
%0 Journal Article
%A Joachim Stubbe
%T Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities
%J Journal of the European Mathematical Society
%D 2010
%P 1347-1353
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/233/
%R 10.4171/jems/233
%F JEMS_2010_12_6_a1
Joachim Stubbe. Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1347-1353. doi : 10.4171/jems/233. http://geodesic.mathdoc.fr/articles/10.4171/jems/233/

Cité par Sources :