Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1347-1353
Cet article a éte moissonné depuis la source EMS Press
We show that phase space bounds on the eigenvalues of Schrödinger operators can be derived from universal bounds recently obtained by E. M. Harrell and the author via a monotonicity property with respect to coupling constants. In particular, we provide a new proof of sharp Lieb–Thirring inequalities.
Classification :
81-XX, 35-XX, 00-XX
Keywords: Universal bounds for eigenvalues, spectral gap, phase space bounds, Lieb–Thirring inequalities, Schrödinger operators
Keywords: Universal bounds for eigenvalues, spectral gap, phase space bounds, Lieb–Thirring inequalities, Schrödinger operators
@article{JEMS_2010_12_6_a1,
author = {Joachim Stubbe},
title = {Universal monotonicity of eigenvalue moments and sharp {Lieb{\textendash}Thirring} inequalities},
journal = {Journal of the European Mathematical Society},
pages = {1347--1353},
year = {2010},
volume = {12},
number = {6},
doi = {10.4171/jems/233},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/233/}
}
TY - JOUR AU - Joachim Stubbe TI - Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities JO - Journal of the European Mathematical Society PY - 2010 SP - 1347 EP - 1353 VL - 12 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/233/ DO - 10.4171/jems/233 ID - JEMS_2010_12_6_a1 ER -
Joachim Stubbe. Universal monotonicity of eigenvalue moments and sharp Lieb–Thirring inequalities. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1347-1353. doi: 10.4171/jems/233
Cité par Sources :