Homogeneous representations of Khovanov–Lauda Algebras
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1293-1306
Cet article a éte moissonné depuis la source EMS Press
We construct irreducible graded representations of simply laced Khovanov–Lauda algebras which are concentrated in one degree. The underlying combinatorics of skew shapes and standard tableaux corresponding to arbitrary simply laced types has been developed previously by Peterson, Proctor and Stembridge. In particular, the Peterson–Proctor hook formula gives the dimensions of the homogeneous irreducible modules corresponding to straight shapes.
@article{JEMS_2010_12_5_a7,
author = {Alexander S. Kleshchev and Arun Ram},
title = {Homogeneous representations of {Khovanov{\textendash}Lauda} {Algebras}},
journal = {Journal of the European Mathematical Society},
pages = {1293--1306},
year = {2010},
volume = {12},
number = {5},
doi = {10.4171/jems/230},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/230/}
}
TY - JOUR AU - Alexander S. Kleshchev AU - Arun Ram TI - Homogeneous representations of Khovanov–Lauda Algebras JO - Journal of the European Mathematical Society PY - 2010 SP - 1293 EP - 1306 VL - 12 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/230/ DO - 10.4171/jems/230 ID - JEMS_2010_12_5_a7 ER -
Alexander S. Kleshchev; Arun Ram. Homogeneous representations of Khovanov–Lauda Algebras. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1293-1306. doi: 10.4171/jems/230
Cité par Sources :