On the dimension of secant varieties
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1267-1291.

Voir la notice de l'article provenant de la source EMS Press

In this paper we generalize Zak’s theorems on tangencies and on linear normality as well as Zak’s definition and classification of Severi varieties. In particular we find sharp lower bounds for the dimension of higher secant varieties of a given variety X under suitable regularity assumptions on X, and we classify varieties for which the bound is attained.
DOI : 10.4171/jems/229
Classification : 14-XX, 00-XX
Keywords: Higher secant varieties, tangential projections, special varieties
@article{JEMS_2010_12_5_a6,
     author = {Luca Chiantini and Ciro Ciliberto},
     title = {On the dimension of secant varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {1267--1291},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2010},
     doi = {10.4171/jems/229},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/229/}
}
TY  - JOUR
AU  - Luca Chiantini
AU  - Ciro Ciliberto
TI  - On the dimension of secant varieties
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1267
EP  - 1291
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/229/
DO  - 10.4171/jems/229
ID  - JEMS_2010_12_5_a6
ER  - 
%0 Journal Article
%A Luca Chiantini
%A Ciro Ciliberto
%T On the dimension of secant varieties
%J Journal of the European Mathematical Society
%D 2010
%P 1267-1291
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/229/
%R 10.4171/jems/229
%F JEMS_2010_12_5_a6
Luca Chiantini; Ciro Ciliberto. On the dimension of secant varieties. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1267-1291. doi : 10.4171/jems/229. http://geodesic.mathdoc.fr/articles/10.4171/jems/229/

Cité par Sources :