Fredholm theory and transversality for the parametrized and for the $S_1$-invariant symplectic action
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1181-1229.

Voir la notice de l'article provenant de la source EMS Press

We study the parametrized Hamiltonian action functional for finite-dimensional families of Hamiltonians. We show that the linearized operator for the _L_2-gradient lines is Fredholm and surjective, for a generic choice of Hamiltonian and almost complex structure. We also establish the Fredholm property and transversality for generic _S_1-invariant families of Hamiltonians and almost complex structures, parametrized by odd-dimensional spheres. This is a foundational result used to define _S_1-equivariant Floer homology. As an intermediate result of independent interest, we generalize Aronszajn’s unique continuation theorem to a class of elliptic integro-differential inequalities of order two.
DOI : 10.4171/jems/227
Classification : 53-XX, 00-XX, 55-XX, 58-XX
@article{JEMS_2010_12_5_a4,
     author = {Fr\'ed\'eric Bourgeois and Alexandru Oancea},
     title = {Fredholm theory and transversality for the parametrized and for the $S_1$-invariant symplectic action},
     journal = {Journal of the European Mathematical Society},
     pages = {1181--1229},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2010},
     doi = {10.4171/jems/227},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/227/}
}
TY  - JOUR
AU  - Frédéric Bourgeois
AU  - Alexandru Oancea
TI  - Fredholm theory and transversality for the parametrized and for the $S_1$-invariant symplectic action
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1181
EP  - 1229
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/227/
DO  - 10.4171/jems/227
ID  - JEMS_2010_12_5_a4
ER  - 
%0 Journal Article
%A Frédéric Bourgeois
%A Alexandru Oancea
%T Fredholm theory and transversality for the parametrized and for the $S_1$-invariant symplectic action
%J Journal of the European Mathematical Society
%D 2010
%P 1181-1229
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/227/
%R 10.4171/jems/227
%F JEMS_2010_12_5_a4
Frédéric Bourgeois; Alexandru Oancea. Fredholm theory and transversality for the parametrized and for the $S_1$-invariant symplectic action. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1181-1229. doi : 10.4171/jems/227. http://geodesic.mathdoc.fr/articles/10.4171/jems/227/

Cité par Sources :