Variational problems with free boundaries for the fractional Laplacian
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1151-1179.

Voir la notice de l'article provenant de la source EMS Press

We discuss properties (optimal regularity, non-degeneracy, smoothness of the free boundary...) of a variational interface problem involving the fractional Laplacian; Due to the non-locality of the Dirichlet problem, the task is nontrivial. This difficulty is by-passed by an extension formula, discovered by the first author and Silvestre, which reduces the study to that of a co-dimension 2 (degenerate) free boundary.
DOI : 10.4171/jems/226
Classification : 35-XX, 00-XX
Keywords: Fractional Laplacian, free boundary
@article{JEMS_2010_12_5_a3,
     author = {Luis A. Caffarelli and Jean-Michel Roquejoffre and Yannick Sire},
     title = {Variational problems with free boundaries for the fractional {Laplacian}},
     journal = {Journal of the European Mathematical Society},
     pages = {1151--1179},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2010},
     doi = {10.4171/jems/226},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/226/}
}
TY  - JOUR
AU  - Luis A. Caffarelli
AU  - Jean-Michel Roquejoffre
AU  - Yannick Sire
TI  - Variational problems with free boundaries for the fractional Laplacian
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1151
EP  - 1179
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/226/
DO  - 10.4171/jems/226
ID  - JEMS_2010_12_5_a3
ER  - 
%0 Journal Article
%A Luis A. Caffarelli
%A Jean-Michel Roquejoffre
%A Yannick Sire
%T Variational problems with free boundaries for the fractional Laplacian
%J Journal of the European Mathematical Society
%D 2010
%P 1151-1179
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/226/
%R 10.4171/jems/226
%F JEMS_2010_12_5_a3
Luis A. Caffarelli; Jean-Michel Roquejoffre; Yannick Sire. Variational problems with free boundaries for the fractional Laplacian. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1151-1179. doi : 10.4171/jems/226. http://geodesic.mathdoc.fr/articles/10.4171/jems/226/

Cité par Sources :