Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1069-1096
Cet article a éte moissonné depuis la source EMS Press
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in Hloc1(R3;R3) satisfying a natural energy bound. Up to translations and rotations, such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
Classification :
35-XX, 00-XX
Keywords: Ginzburg–Landau equation, harmonic maps, local minimizers
Keywords: Ginzburg–Landau equation, harmonic maps, local minimizers
@article{JEMS_2010_12_5_a0,
author = {Vincent Millot and Adriano Pisante},
title = {Symmetry of local minimizers for the three-dimensional {Ginzburg{\textendash}Landau} functional},
journal = {Journal of the European Mathematical Society},
pages = {1069--1096},
year = {2010},
volume = {12},
number = {5},
doi = {10.4171/jems/223},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/223/}
}
TY - JOUR AU - Vincent Millot AU - Adriano Pisante TI - Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional JO - Journal of the European Mathematical Society PY - 2010 SP - 1069 EP - 1096 VL - 12 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/223/ DO - 10.4171/jems/223 ID - JEMS_2010_12_5_a0 ER -
%0 Journal Article %A Vincent Millot %A Adriano Pisante %T Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional %J Journal of the European Mathematical Society %D 2010 %P 1069-1096 %V 12 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/223/ %R 10.4171/jems/223 %F JEMS_2010_12_5_a0
Vincent Millot; Adriano Pisante. Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1069-1096. doi: 10.4171/jems/223
Cité par Sources :