Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional
Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1069-1096.

Voir la notice de l'article provenant de la source EMS Press

We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in Hloc1​(R3;R3) satisfying a natural energy bound. Up to translations and rotations, such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
DOI : 10.4171/jems/223
Classification : 35-XX, 00-XX
Keywords: Ginzburg–Landau equation, harmonic maps, local minimizers
@article{JEMS_2010_12_5_a0,
     author = {Vincent Millot and Adriano Pisante},
     title = {Symmetry of local minimizers for the three-dimensional {Ginzburg{\textendash}Landau} functional},
     journal = {Journal of the European Mathematical Society},
     pages = {1069--1096},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2010},
     doi = {10.4171/jems/223},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/223/}
}
TY  - JOUR
AU  - Vincent Millot
AU  - Adriano Pisante
TI  - Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1069
EP  - 1096
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/223/
DO  - 10.4171/jems/223
ID  - JEMS_2010_12_5_a0
ER  - 
%0 Journal Article
%A Vincent Millot
%A Adriano Pisante
%T Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional
%J Journal of the European Mathematical Society
%D 2010
%P 1069-1096
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/223/
%R 10.4171/jems/223
%F JEMS_2010_12_5_a0
Vincent Millot; Adriano Pisante. Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional. Journal of the European Mathematical Society, Tome 12 (2010) no. 5, pp. 1069-1096. doi : 10.4171/jems/223. http://geodesic.mathdoc.fr/articles/10.4171/jems/223/

Cité par Sources :