The Ore conjecture
Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 939-1008
Cet article a éte moissonné depuis la source EMS Press
The Ore conjecture, posed in 1951, states that every element of every finite non-abelian simple group is a commutator. Despite considerable effort, it remained open for various infinite families of simple groups. In this paper we develop new strategies, combining character-theoretic methods with other ingredients, and use them to establish the conjecture.
@article{JEMS_2010_12_4_a4,
author = {Martin W. Liebeck and Eamonn A. O'Brien and Aner Shalev and Pham Huu Tiep},
title = {The {Ore} conjecture},
journal = {Journal of the European Mathematical Society},
pages = {939--1008},
year = {2010},
volume = {12},
number = {4},
doi = {10.4171/jems/220},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/220/}
}
TY - JOUR AU - Martin W. Liebeck AU - Eamonn A. O'Brien AU - Aner Shalev AU - Pham Huu Tiep TI - The Ore conjecture JO - Journal of the European Mathematical Society PY - 2010 SP - 939 EP - 1008 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/220/ DO - 10.4171/jems/220 ID - JEMS_2010_12_4_a4 ER -
Martin W. Liebeck; Eamonn A. O'Brien; Aner Shalev; Pham Huu Tiep. The Ore conjecture. Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 939-1008. doi: 10.4171/jems/220
Cité par Sources :