Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 69-99.

Voir la notice de l'article provenant de la source EMS Press

We continue the analysis of the problem of metastability for reversible diffusion processes, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of the generator. Recall that we are considering processes with generators of the form −εΔ+∇F(⋅)∇ on Rd or subsets of Rd, where F is a smooth function with finitely many local minima. Here we consider only the generic situation where the depths of all local minima are different. We show that in general the exponentially small part of the spectrum is given, up to multiplicative errors tending to one, by the eigenvalues of the classical capacity matrix of the array of capacitors made of balls of radius ε centered at the positions of the local minima of F. We also get very precise uniform control on the corresponding eigenfunctions. Moreover, these eigenvalues can be identified with the same precision with the inverse mean metastable exit times from each minimum. In [BEGK3] it was proven that these mean times are given, again up to multiplicative errors that tend to one, by the classical Eyring–Kramers formula.
DOI : 10.4171/jems/22
Classification : 82-XX, 60-XX, 00-XX
Keywords: Metastability, diffusion processes, spectral theory, potential theory, capacity, exit timespotential theory, capacity, exit times
@article{JEMS_2005_7_1_a3,
     author = {Anton Bovier and V\'eronique Gayrard and Markus Klein},
     title = {Metastability in reversible diffusion processes {II:} precise asymptotics for small eigenvalues},
     journal = {Journal of the European Mathematical Society},
     pages = {69--99},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2005},
     doi = {10.4171/jems/22},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/22/}
}
TY  - JOUR
AU  - Anton Bovier
AU  - Véronique Gayrard
AU  - Markus Klein
TI  - Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues
JO  - Journal of the European Mathematical Society
PY  - 2005
SP  - 69
EP  - 99
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/22/
DO  - 10.4171/jems/22
ID  - JEMS_2005_7_1_a3
ER  - 
%0 Journal Article
%A Anton Bovier
%A Véronique Gayrard
%A Markus Klein
%T Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues
%J Journal of the European Mathematical Society
%D 2005
%P 69-99
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/22/
%R 10.4171/jems/22
%F JEMS_2005_7_1_a3
Anton Bovier; Véronique Gayrard; Markus Klein. Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 69-99. doi : 10.4171/jems/22. http://geodesic.mathdoc.fr/articles/10.4171/jems/22/

Cité par Sources :