Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$
Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 855-882.

Voir la notice de l'article provenant de la source EMS Press

Several Liouville-type theorems are presented for stable solutions of the equation −∆u=f(u) in RN, where f>0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.
DOI : 10.4171/jems/217
Classification : 35-XX, 00-XX
@article{JEMS_2010_12_4_a1,
     author = {Louis Dupaigne and Alberto Farina},
     title = {Stable solutions of $\ensuremath{-}\Delta u = f(u)$ in $\mathbb{R}^N$},
     journal = {Journal of the European Mathematical Society},
     pages = {855--882},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2010},
     doi = {10.4171/jems/217},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/217/}
}
TY  - JOUR
AU  - Louis Dupaigne
AU  - Alberto Farina
TI  - Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 855
EP  - 882
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/217/
DO  - 10.4171/jems/217
ID  - JEMS_2010_12_4_a1
ER  - 
%0 Journal Article
%A Louis Dupaigne
%A Alberto Farina
%T Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$
%J Journal of the European Mathematical Society
%D 2010
%P 855-882
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/217/
%R 10.4171/jems/217
%F JEMS_2010_12_4_a1
Louis Dupaigne; Alberto Farina. Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$. Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 855-882. doi : 10.4171/jems/217. http://geodesic.mathdoc.fr/articles/10.4171/jems/217/

Cité par Sources :