Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$
Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 855-882
Cet article a éte moissonné depuis la source EMS Press
Several Liouville-type theorems are presented for stable solutions of the equation −∆u=f(u) in RN, where f>0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.
@article{JEMS_2010_12_4_a1,
author = {Louis Dupaigne and Alberto Farina},
title = {Stable solutions of $\ensuremath{-}\Delta u = f(u)$ in $\mathbb{R}^N$},
journal = {Journal of the European Mathematical Society},
pages = {855--882},
year = {2010},
volume = {12},
number = {4},
doi = {10.4171/jems/217},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/217/}
}
TY - JOUR
AU - Louis Dupaigne
AU - Alberto Farina
TI - Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$
JO - Journal of the European Mathematical Society
PY - 2010
SP - 855
EP - 882
VL - 12
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/217/
DO - 10.4171/jems/217
ID - JEMS_2010_12_4_a1
ER -
Louis Dupaigne; Alberto Farina. Stable solutions of $−\Delta u = f(u)$ in $\mathbb{R}^N$. Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 855-882. doi: 10.4171/jems/217
Cité par Sources :