Random paths with bounded local time
Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 819-854.

Voir la notice de l'article provenant de la source EMS Press

We consider one-dimensional Brownian motion conditioned (in a suitable sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.58. . . as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). We also study the random walk case and show that the process is asymptotically ballistic but with an unknown speed.
DOI : 10.4171/jems/216
Classification : 60-XX, 00-XX
Keywords: Brownian motion, local times, self-repelling processes, Ray-Knight theorem, entropic repulsion
@article{JEMS_2010_12_4_a0,
     author = {Itai Benjamini and Nathana\"el Berestycki},
     title = {Random paths with bounded local time},
     journal = {Journal of the European Mathematical Society},
     pages = {819--854},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2010},
     doi = {10.4171/jems/216},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/216/}
}
TY  - JOUR
AU  - Itai Benjamini
AU  - Nathanaël Berestycki
TI  - Random paths with bounded local time
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 819
EP  - 854
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/216/
DO  - 10.4171/jems/216
ID  - JEMS_2010_12_4_a0
ER  - 
%0 Journal Article
%A Itai Benjamini
%A Nathanaël Berestycki
%T Random paths with bounded local time
%J Journal of the European Mathematical Society
%D 2010
%P 819-854
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/216/
%R 10.4171/jems/216
%F JEMS_2010_12_4_a0
Itai Benjamini; Nathanaël Berestycki. Random paths with bounded local time. Journal of the European Mathematical Society, Tome 12 (2010) no. 4, pp. 819-854. doi : 10.4171/jems/216. http://geodesic.mathdoc.fr/articles/10.4171/jems/216/

Cité par Sources :