The Kodaira dimension of the moduli space of Prym varieties
Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 755-795
Cet article a éte moissonné depuis la source EMS Press
We study the enumerative geometry of the moduli space Rg of Prym varieties of dimension g–1. Our main result is that the compactication of Rg is of general type as soon as g>13 and g is different from 15. We achieve this by computing the class of two types of cycles on Rg: one defined in terms of Koszul cohomology of Prym curves, the other defined in terms of Raynaud theta divisors associated to certain vector bundles on curves. We formulate a Prym–Green conjecture on syzygies of Prym-canonical curves. We also perform a detailed study of the singularities of the Prym moduli space, and show that for g≥4, pluricanonical forms extend to any desingularization of the moduli space.
@article{JEMS_2010_12_3_a5,
author = {Gavril Farkas and Katharina Ludwig},
title = {The {Kodaira} dimension of the moduli space of {Prym} varieties},
journal = {Journal of the European Mathematical Society},
pages = {755--795},
year = {2010},
volume = {12},
number = {3},
doi = {10.4171/jems/214},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/214/}
}
TY - JOUR AU - Gavril Farkas AU - Katharina Ludwig TI - The Kodaira dimension of the moduli space of Prym varieties JO - Journal of the European Mathematical Society PY - 2010 SP - 755 EP - 795 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/214/ DO - 10.4171/jems/214 ID - JEMS_2010_12_3_a5 ER -
Gavril Farkas; Katharina Ludwig. The Kodaira dimension of the moduli space of Prym varieties. Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 755-795. doi: 10.4171/jems/214
Cité par Sources :