On nearly radial marginals of high-dimensional probability measures
Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 723-754.

Voir la notice de l'article provenant de la source EMS Press

Suppose that μ is an absolutely continuous probability measure on Rn, for large n. Then μ has low-dimensional marginals that are approximately spherically-symmetric. More precisely, if n≥(C/ε)Cd, then there exist d-dimensional marginals of μ that are ε-far from being spherically-symmetric, in an appropriate sense. Here C>0 is a universal constant.
DOI : 10.4171/jems/213
Classification : 28-XX, 46-XX, 60-XX, 00-XX
Keywords: High-dimensional measures, marginals, Dvoretzky's theorem
@article{JEMS_2010_12_3_a4,
     author = {Bo'az Klartag},
     title = {On nearly radial marginals of high-dimensional probability measures},
     journal = {Journal of the European Mathematical Society},
     pages = {723--754},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2010},
     doi = {10.4171/jems/213},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/213/}
}
TY  - JOUR
AU  - Bo'az Klartag
TI  - On nearly radial marginals of high-dimensional probability measures
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 723
EP  - 754
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/213/
DO  - 10.4171/jems/213
ID  - JEMS_2010_12_3_a4
ER  - 
%0 Journal Article
%A Bo'az Klartag
%T On nearly radial marginals of high-dimensional probability measures
%J Journal of the European Mathematical Society
%D 2010
%P 723-754
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/213/
%R 10.4171/jems/213
%F JEMS_2010_12_3_a4
Bo'az Klartag. On nearly radial marginals of high-dimensional probability measures. Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 723-754. doi : 10.4171/jems/213. http://geodesic.mathdoc.fr/articles/10.4171/jems/213/

Cité par Sources :