Uniqueness of Brownian motion on Sierpiński carpets
Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 655-701.

Voir la notice de l'article provenant de la source EMS Press

We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpinski carpet that is invariant with respect to the local symmetries of the carpet. Consequently for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined.
DOI : 10.4171/jems/211
Classification : 60-XX, 37-XX, 00-XX
Keywords: Sierpiński carpet, fractals, diffusions, Brownian motion, uniqueness, Dirichlet forms
@article{JEMS_2010_12_3_a2,
     author = {Martin T. Barlow and Richard F. Bass and Takashi Kumagai and Alexander Teplyaev},
     title = {Uniqueness of {Brownian} motion on {Sierpi&#324ski} carpets},
     journal = {Journal of the European Mathematical Society},
     pages = {655--701},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2010},
     doi = {10.4171/jems/211},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/211/}
}
TY  - JOUR
AU  - Martin T. Barlow
AU  - Richard F. Bass
AU  - Takashi Kumagai
AU  - Alexander Teplyaev
TI  - Uniqueness of Brownian motion on Sierpiński carpets
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 655
EP  - 701
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/211/
DO  - 10.4171/jems/211
ID  - JEMS_2010_12_3_a2
ER  - 
%0 Journal Article
%A Martin T. Barlow
%A Richard F. Bass
%A Takashi Kumagai
%A Alexander Teplyaev
%T Uniqueness of Brownian motion on Sierpiński carpets
%J Journal of the European Mathematical Society
%D 2010
%P 655-701
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/211/
%R 10.4171/jems/211
%F JEMS_2010_12_3_a2
Martin T. Barlow; Richard F. Bass; Takashi Kumagai; Alexander Teplyaev. Uniqueness of Brownian motion on Sierpiński carpets. Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 655-701. doi : 10.4171/jems/211. http://geodesic.mathdoc.fr/articles/10.4171/jems/211/

Cité par Sources :