Uniqueness of Brownian motion on Sierpiński carpets
Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 655-701
Cet article a éte moissonné depuis la source EMS Press
We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpinski carpet that is invariant with respect to the local symmetries of the carpet. Consequently for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined.
Classification :
60-XX, 37-XX, 00-XX
Keywords: Sierpiński carpet, fractals, diffusions, Brownian motion, uniqueness, Dirichlet forms
Keywords: Sierpiński carpet, fractals, diffusions, Brownian motion, uniqueness, Dirichlet forms
@article{JEMS_2010_12_3_a2,
author = {Martin T. Barlow and Richard F. Bass and Takashi Kumagai and Alexander Teplyaev},
title = {Uniqueness of {Brownian} motion on {Sierpiński} carpets},
journal = {Journal of the European Mathematical Society},
pages = {655--701},
year = {2010},
volume = {12},
number = {3},
doi = {10.4171/jems/211},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/211/}
}
TY - JOUR AU - Martin T. Barlow AU - Richard F. Bass AU - Takashi Kumagai AU - Alexander Teplyaev TI - Uniqueness of Brownian motion on Sierpiński carpets JO - Journal of the European Mathematical Society PY - 2010 SP - 655 EP - 701 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/211/ DO - 10.4171/jems/211 ID - JEMS_2010_12_3_a2 ER -
%0 Journal Article %A Martin T. Barlow %A Richard F. Bass %A Takashi Kumagai %A Alexander Teplyaev %T Uniqueness of Brownian motion on Sierpiński carpets %J Journal of the European Mathematical Society %D 2010 %P 655-701 %V 12 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/211/ %R 10.4171/jems/211 %F JEMS_2010_12_3_a2
Martin T. Barlow; Richard F. Bass; Takashi Kumagai; Alexander Teplyaev. Uniqueness of Brownian motion on Sierpiński carpets. Journal of the European Mathematical Society, Tome 12 (2010) no. 3, pp. 655-701. doi: 10.4171/jems/211
Cité par Sources :