Measures of maximal entropy for random $\beta$-expansions
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 51-68
Cet article a éte moissonné depuis la source EMS Press
Let β>1 be a non-integer. We consider β-expansions of the form ∑i=1∞βidi, where the digits (di)i≥1 are generated by means of a Borel map Kβ defined on {0,1}N×[0,⌊β⌋/(β−1)]. We show that Kβ has a unique mixing measure νβ of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure νβ the digits (di)i≥1 form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of β-expansions.
Classification :
28-XX, 00-XX
Keywords: greedy expansions, lazy expansions, Markov chains, measures of maximal entropy
Keywords: greedy expansions, lazy expansions, Markov chains, measures of maximal entropy
@article{JEMS_2005_7_1_a2,
author = {Karma Dajani and Martijn de Vries},
title = {Measures of maximal entropy for random $\beta$-expansions},
journal = {Journal of the European Mathematical Society},
pages = {51--68},
year = {2005},
volume = {7},
number = {1},
doi = {10.4171/jems/21},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/21/}
}
TY - JOUR AU - Karma Dajani AU - Martijn de Vries TI - Measures of maximal entropy for random $\beta$-expansions JO - Journal of the European Mathematical Society PY - 2005 SP - 51 EP - 68 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/21/ DO - 10.4171/jems/21 ID - JEMS_2005_7_1_a2 ER -
Karma Dajani; Martijn de Vries. Measures of maximal entropy for random $\beta$-expansions. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 51-68. doi: 10.4171/jems/21
Cité par Sources :