Measures of maximal entropy for random $\beta$-expansions
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 51-68.

Voir la notice de l'article provenant de la source EMS Press

Let β>1 be a non-integer. We consider β-expansions of the form ∑i=1∞​βidi​​, where the digits (di​)i≥1​ are generated by means of a Borel map Kβ​ defined on {0,1}N×[0,⌊β⌋/(β−1)]. We show that Kβ​ has a unique mixing measure νβ​ of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure νβ​ the digits (di​)i≥1​ form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of β-expansions.
DOI : 10.4171/jems/21
Classification : 28-XX, 00-XX
Keywords: greedy expansions, lazy expansions, Markov chains, measures of maximal entropy
@article{JEMS_2005_7_1_a2,
     author = {Karma Dajani and Martijn de Vries},
     title = {Measures of maximal entropy for random $\beta$-expansions},
     journal = {Journal of the European Mathematical Society},
     pages = {51--68},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2005},
     doi = {10.4171/jems/21},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/21/}
}
TY  - JOUR
AU  - Karma Dajani
AU  - Martijn de Vries
TI  - Measures of maximal entropy for random $\beta$-expansions
JO  - Journal of the European Mathematical Society
PY  - 2005
SP  - 51
EP  - 68
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/21/
DO  - 10.4171/jems/21
ID  - JEMS_2005_7_1_a2
ER  - 
%0 Journal Article
%A Karma Dajani
%A Martijn de Vries
%T Measures of maximal entropy for random $\beta$-expansions
%J Journal of the European Mathematical Society
%D 2005
%P 51-68
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/21/
%R 10.4171/jems/21
%F JEMS_2005_7_1_a2
Karma Dajani; Martijn de Vries. Measures of maximal entropy for random $\beta$-expansions. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 51-68. doi : 10.4171/jems/21. http://geodesic.mathdoc.fr/articles/10.4171/jems/21/

Cité par Sources :