The end curve theorem for normal complex surface singularities
Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 471-503
Cet article a éte moissonné depuis la source EMS Press
We prove the “End Curve Theorem,” which states that a normal surface singularity (X,o) with rational homology sphere link Σ is a splice quotient singularity if and only if it has an end curve function for each leaf of a good resolution tree.
Classification :
32-XX, 14-XX, 58-XX, 00-XX
Keywords: Surface singularity, splice quotient singularity, rational homology sphere, complete intersection singularity, abelian cover, numerical semigroup, monomial curve, linking pairing
Keywords: Surface singularity, splice quotient singularity, rational homology sphere, complete intersection singularity, abelian cover, numerical semigroup, monomial curve, linking pairing
@article{JEMS_2010_12_2_a8,
author = {Walter D. Neumann and Jonathan Wahl},
title = {The end curve theorem for normal complex surface singularities},
journal = {Journal of the European Mathematical Society},
pages = {471--503},
year = {2010},
volume = {12},
number = {2},
doi = {10.4171/jems/206},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/206/}
}
TY - JOUR AU - Walter D. Neumann AU - Jonathan Wahl TI - The end curve theorem for normal complex surface singularities JO - Journal of the European Mathematical Society PY - 2010 SP - 471 EP - 503 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/206/ DO - 10.4171/jems/206 ID - JEMS_2010_12_2_a8 ER -
Walter D. Neumann; Jonathan Wahl. The end curve theorem for normal complex surface singularities. Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 471-503. doi: 10.4171/jems/206
Cité par Sources :