Fréchet differentiability of Lipschitz functions via a variational principle
Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 385-412
Cet article a éte moissonné depuis la source EMS Press
We prove a new variational principle which in particular does not assume the completeness of the domain. As an application we give a new, more natural, proof of the fact that a real valued Lipschitz function on an Asplund space has points of Fréchet differentiability.
Classification :
26-XX, 58-XX, 00-XX
Keywords: Fréchet differentiability, Lipschitz functions, variational principle, Asplund space, mean value theorem, (d,d0)-complete metric space, cone monotone functions
Keywords: Fréchet differentiability, Lipschitz functions, variational principle, Asplund space, mean value theorem, (d,d0)-complete metric space, cone monotone functions
@article{JEMS_2010_12_2_a4,
author = {Joram Lindenstrauss and David Preiss and Jaroslav Ti\v{s}er},
title = {Fr\'echet differentiability of {Lipschitz} functions via a variational principle},
journal = {Journal of the European Mathematical Society},
pages = {385--412},
year = {2010},
volume = {12},
number = {2},
doi = {10.4171/jems/202},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/202/}
}
TY - JOUR AU - Joram Lindenstrauss AU - David Preiss AU - Jaroslav Tišer TI - Fréchet differentiability of Lipschitz functions via a variational principle JO - Journal of the European Mathematical Society PY - 2010 SP - 385 EP - 412 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/202/ DO - 10.4171/jems/202 ID - JEMS_2010_12_2_a4 ER -
%0 Journal Article %A Joram Lindenstrauss %A David Preiss %A Jaroslav Tišer %T Fréchet differentiability of Lipschitz functions via a variational principle %J Journal of the European Mathematical Society %D 2010 %P 385-412 %V 12 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/202/ %R 10.4171/jems/202 %F JEMS_2010_12_2_a4
Joram Lindenstrauss; David Preiss; Jaroslav Tišer. Fréchet differentiability of Lipschitz functions via a variational principle. Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 385-412. doi: 10.4171/jems/202
Cité par Sources :