Fréchet differentiability of Lipschitz functions via a variational principle
Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 385-412.

Voir la notice de l'article provenant de la source EMS Press

We prove a new variational principle which in particular does not assume the completeness of the domain. As an application we give a new, more natural, proof of the fact that a real valued Lipschitz function on an Asplund space has points of Fréchet differentiability.
DOI : 10.4171/jems/202
Classification : 26-XX, 58-XX, 00-XX
Keywords: Fréchet differentiability, Lipschitz functions, variational principle, Asplund space, mean value theorem, (d,d0)-complete metric space, cone monotone functions
@article{JEMS_2010_12_2_a4,
     author = {Joram Lindenstrauss and David Preiss and Jaroslav Ti\v{s}er},
     title = {Fr\'echet differentiability of {Lipschitz} functions via a variational principle},
     journal = {Journal of the European Mathematical Society},
     pages = {385--412},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4171/jems/202},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/202/}
}
TY  - JOUR
AU  - Joram Lindenstrauss
AU  - David Preiss
AU  - Jaroslav Tišer
TI  - Fréchet differentiability of Lipschitz functions via a variational principle
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 385
EP  - 412
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/202/
DO  - 10.4171/jems/202
ID  - JEMS_2010_12_2_a4
ER  - 
%0 Journal Article
%A Joram Lindenstrauss
%A David Preiss
%A Jaroslav Tišer
%T Fréchet differentiability of Lipschitz functions via a variational principle
%J Journal of the European Mathematical Society
%D 2010
%P 385-412
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/202/
%R 10.4171/jems/202
%F JEMS_2010_12_2_a4
Joram Lindenstrauss; David Preiss; Jaroslav Tišer. Fréchet differentiability of Lipschitz functions via a variational principle. Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 385-412. doi : 10.4171/jems/202. http://geodesic.mathdoc.fr/articles/10.4171/jems/202/

Cité par Sources :