The genera, reflexibility and simplicity of regular maps
Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 343-364.

Voir la notice de l'article provenant de la source EMS Press

This paper uses combinatorial group theory to help answer some long-standing questions about the genera of orientable surfaces that carry particular kinds of regular maps. By classifying all orientably-regular maps whose automorphism group has order coprime to g−1, where g is the genus, all orientably-regular maps of genus p+1 for p prime are determined. As a consequence, it is shown that orientable surfaces of infinitely many genera carry no regular map that is chiral (irreflexible), and that orientable surfaces of infinitely many genera carry no reflexible regular map with simple underlying graph. Another consequence is a simpler proof of the Breda–Nedela–Širáň classification of non-orientable regular maps of Euler characteristic −p where p is prime.
DOI : 10.4171/jems/200
Classification : 57-XX, 05-XX, 00-XX
Keywords: Regular map, symmetric graph, embedding, genus, chiral, reflexible
@article{JEMS_2010_12_2_a2,
     author = {Marston D. E. Conder and Jozef \v{S}ir\'a\v{n} and Thomas W. Tucker},
     title = {The genera, reflexibility and simplicity of regular maps},
     journal = {Journal of the European Mathematical Society},
     pages = {343--364},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4171/jems/200},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/200/}
}
TY  - JOUR
AU  - Marston D. E. Conder
AU  - Jozef Širáň
AU  - Thomas W. Tucker
TI  - The genera, reflexibility and simplicity of regular maps
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 343
EP  - 364
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/200/
DO  - 10.4171/jems/200
ID  - JEMS_2010_12_2_a2
ER  - 
%0 Journal Article
%A Marston D. E. Conder
%A Jozef Širáň
%A Thomas W. Tucker
%T The genera, reflexibility and simplicity of regular maps
%J Journal of the European Mathematical Society
%D 2010
%P 343-364
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/200/
%R 10.4171/jems/200
%F JEMS_2010_12_2_a2
Marston D. E. Conder; Jozef Širáň; Thomas W. Tucker. The genera, reflexibility and simplicity of regular maps. Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 343-364. doi : 10.4171/jems/200. http://geodesic.mathdoc.fr/articles/10.4171/jems/200/

Cité par Sources :