Vortex rings for the Gross-Pitaevskii equation
Journal of the European Mathematical Society, Tome 6 (2004) no. 1, pp. 17-94
Cet article a éte moissonné depuis la source EMS Press
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross-Pitaevskii (GP) equation in dimension N≥3. We also extend the asymptotic analysis of the free field Ginzburg-Landau equation to a larger class of equations, including the Ginzburg-Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N=3).Ginzburg-Landau equation to a larger class of equations, including the Ginzburg-Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N=3).
Classification :
35-XX, 49-XX, 53-XX, 58-XX
Keywords: NLS, Gross-Pitaevskii, Ginzburg-Landau, Vortex rings
Keywords: NLS, Gross-Pitaevskii, Ginzburg-Landau, Vortex rings
@article{JEMS_2004_6_1_a1,
author = {Fabrice Bethuel and Giandomenico Orlandi and Didier Smets},
title = {Vortex rings for the {Gross-Pitaevskii} equation},
journal = {Journal of the European Mathematical Society},
pages = {17--94},
year = {2004},
volume = {6},
number = {1},
doi = {10.4171/jems/2},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/2/}
}
TY - JOUR AU - Fabrice Bethuel AU - Giandomenico Orlandi AU - Didier Smets TI - Vortex rings for the Gross-Pitaevskii equation JO - Journal of the European Mathematical Society PY - 2004 SP - 17 EP - 94 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/2/ DO - 10.4171/jems/2 ID - JEMS_2004_6_1_a1 ER -
Fabrice Bethuel; Giandomenico Orlandi; Didier Smets. Vortex rings for the Gross-Pitaevskii equation. Journal of the European Mathematical Society, Tome 6 (2004) no. 1, pp. 17-94. doi: 10.4171/jems/2
Cité par Sources :