Compactness for embedded pseudoholomorphic curves in 3-manifolds
Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 313-342.

Voir la notice de l'article provenant de la source EMS Press

We prove a compactness theorem for holomorphic curves in 4-dimensional symplectizations that have embedded projections to the underlying 3-manifold. It strengthens the cylindrical case of the SFT compactness theorem [BEH+ 03] by using intersection theory to show that degenerations of such sequences never give rise to multiple covers or nodes, so transversality is easily achieved. This has application to the theory of stable finite energy foliations introduced in [HWZ03], and also suggests a new approach to defining SFT-type invariants for contact 3manifolds, or more generally, 3-manifolds with stable Hamiltonian structures.
DOI : 10.4171/jems/199
Classification : 57-XX, 00-XX
Keywords:
@article{JEMS_2010_12_2_a1,
     author = {Chris Wendl},
     title = {Compactness for embedded pseudoholomorphic curves in 3-manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {313--342},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4171/jems/199},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/199/}
}
TY  - JOUR
AU  - Chris Wendl
TI  - Compactness for embedded pseudoholomorphic curves in 3-manifolds
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 313
EP  - 342
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/199/
DO  - 10.4171/jems/199
ID  - JEMS_2010_12_2_a1
ER  - 
%0 Journal Article
%A Chris Wendl
%T Compactness for embedded pseudoholomorphic curves in 3-manifolds
%J Journal of the European Mathematical Society
%D 2010
%P 313-342
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/199/
%R 10.4171/jems/199
%F JEMS_2010_12_2_a1
Chris Wendl. Compactness for embedded pseudoholomorphic curves in 3-manifolds. Journal of the European Mathematical Society, Tome 12 (2010) no. 2, pp. 313-342. doi : 10.4171/jems/199. http://geodesic.mathdoc.fr/articles/10.4171/jems/199/

Cité par Sources :