On real Kähler Euclidean submanifolds with non-negative Ricci curvature
Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source EMS Press
We show that any real Kähler Euclidean submanifold f:M2n→R2n+p with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to 2n−2p. Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that M2n is complete. In particular, we conclude that the only real Kähler submanifolds M2n in R3n that have either positive Ricci curvature or positive holomorphic sectional curvature are precisely products of n orientable surfaces in R3 with positive Gaussian curvature. Further applications of our main result are also given.
Classification :
53-XX, 00-XX
Keywords: Kähler submanifolds, Ricci curvature, holomorphic curvature
Keywords: Kähler submanifolds, Ricci curvature, holomorphic curvature
@article{JEMS_2005_7_1_a0,
author = {Luis A. Florit and Wing San Hui and Fangyang Zheng},
title = {On real {K\"ahler} {Euclidean} submanifolds with non-negative {Ricci} curvature},
journal = {Journal of the European Mathematical Society},
pages = {1--11},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2005},
doi = {10.4171/jems/19},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/19/}
}
TY - JOUR AU - Luis A. Florit AU - Wing San Hui AU - Fangyang Zheng TI - On real Kähler Euclidean submanifolds with non-negative Ricci curvature JO - Journal of the European Mathematical Society PY - 2005 SP - 1 EP - 11 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/19/ DO - 10.4171/jems/19 ID - JEMS_2005_7_1_a0 ER -
%0 Journal Article %A Luis A. Florit %A Wing San Hui %A Fangyang Zheng %T On real Kähler Euclidean submanifolds with non-negative Ricci curvature %J Journal of the European Mathematical Society %D 2005 %P 1-11 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/19/ %R 10.4171/jems/19 %F JEMS_2005_7_1_a0
Luis A. Florit; Wing San Hui; Fangyang Zheng. On real Kähler Euclidean submanifolds with non-negative Ricci curvature. Journal of the European Mathematical Society, Tome 7 (2005) no. 1, pp. 1-11. doi: 10.4171/jems/19
Cité par Sources :