The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 1-22
Cet article a éte moissonné depuis la source EMS Press
We prove that the complement to the affine complex arrangement of type Bn is a K(π,1) space. We also compute the cohomology of the affine Artin group GBn (of type Bn) with coefficients in interesting local systems. In particular, we consider the module Q[q±1,t±1], where the first n standard generators of GBn act by (−q)-multiplication while the last generator acts by (−t) multiplication. Such a representation generalizes the analogous 1-parameter representation related to the bundle structure over the complement to the discriminant hypersurface, endowed with the monodromy action of the associated Milnor fibre. The cohomology of GBn with trivial coefficients is derived from the previous one.
Classification :
20-XX, 00-XX
Keywords: Affine Artin groups, twisted cohomology, group representations
Keywords: Affine Artin groups, twisted cohomology, group representations
@article{JEMS_2010_12_1_a0,
author = {Filippo Callegaro and Davide Moroni and Mario Salvetti},
title = {The $K(\pi,1)$ problem for the affine {Artin} group of type $\widetilde{B}_n$ and its cohomology},
journal = {Journal of the European Mathematical Society},
pages = {1--22},
year = {2010},
volume = {12},
number = {1},
doi = {10.4171/jems/187},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/187/}
}
TY - JOUR
AU - Filippo Callegaro
AU - Davide Moroni
AU - Mario Salvetti
TI - The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
JO - Journal of the European Mathematical Society
PY - 2010
SP - 1
EP - 22
VL - 12
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/187/
DO - 10.4171/jems/187
ID - JEMS_2010_12_1_a0
ER -
%0 Journal Article
%A Filippo Callegaro
%A Davide Moroni
%A Mario Salvetti
%T The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
%J Journal of the European Mathematical Society
%D 2010
%P 1-22
%V 12
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/187/
%R 10.4171/jems/187
%F JEMS_2010_12_1_a0
Filippo Callegaro; Davide Moroni; Mario Salvetti. The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology. Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 1-22. doi: 10.4171/jems/187
Cité par Sources :