The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source EMS Press

We prove that the complement to the affine complex arrangement of type Bn​ is a K(π,1) space. We also compute the cohomology of the affine Artin group GBn​​ (of type Bn​) with coefficients in interesting local systems. In particular, we consider the module Q[q±1,t±1], where the first n standard generators of GBn​​ act by (−q)-multiplication while the last generator acts by (−t) multiplication. Such a representation generalizes the analogous 1-parameter representation related to the bundle structure over the complement to the discriminant hypersurface, endowed with the monodromy action of the associated Milnor fibre. The cohomology of GBn​​ with trivial coefficients is derived from the previous one.
DOI : 10.4171/jems/187
Classification : 20-XX, 00-XX
Keywords: Affine Artin groups, twisted cohomology, group representations
@article{JEMS_2010_12_1_a0,
     author = {Filippo Callegaro and Davide Moroni and Mario Salvetti},
     title = {The $K(\pi,1)$ problem for the affine {Artin} group of type $\widetilde{B}_n$ and its cohomology},
     journal = {Journal of the European Mathematical Society},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4171/jems/187},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/187/}
}
TY  - JOUR
AU  - Filippo Callegaro
AU  - Davide Moroni
AU  - Mario Salvetti
TI  - The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1
EP  - 22
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/187/
DO  - 10.4171/jems/187
ID  - JEMS_2010_12_1_a0
ER  - 
%0 Journal Article
%A Filippo Callegaro
%A Davide Moroni
%A Mario Salvetti
%T The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology
%J Journal of the European Mathematical Society
%D 2010
%P 1-22
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/187/
%R 10.4171/jems/187
%F JEMS_2010_12_1_a0
Filippo Callegaro; Davide Moroni; Mario Salvetti. The $K(\pi,1)$ problem for the affine Artin group of type $\widetilde{B}_n$ and its cohomology. Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 1-22. doi : 10.4171/jems/187. http://geodesic.mathdoc.fr/articles/10.4171/jems/187/

Cité par Sources :