Formal power series rings over a $\pi$-domain
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1429-1443.

Voir la notice de l'article provenant de la source EMS Press

Let R be an integral domain, X be a set of indeterminates over R, and R[[X]]3​ be the full ring of formal power series in X] over R. We show that the Picard group of R[[X]]3​ is isomorphic to the Picard group of R. An integral domain is called a π-domain if every principal ideal is a product of prime ideals. An integral domain is a π-domain if and only if it is a Krull domain that is locally a unique factorization domain. We show that R[[X]]3​ is a π-domain if R[[X1​,...,Xn​]] is a π-domain for every n≥1. In particular, R[[X]]3​ is a π-domain if R is a Noetherian regular domain. We extend these results to rings with zero-divisors. A commutative ring R with identity is called a π-ring if every principal ideal is a product of prime ideals. We show that R[[X]]3​ is a π-ring if R is a Noetherian regular ring.
DOI : 10.4171/jems/186
Classification : 13-XX, 00-XX
Keywords: Krull domain, π-domain, unique factorization domain, formal power series ring, invertible ideal, class group, Picard group
@article{JEMS_2009_11_6_a9,
     author = {Byung Gyun Kang and Dong Yeol Oh},
     title = {Formal power series rings over a $\pi$-domain},
     journal = {Journal of the European Mathematical Society},
     pages = {1429--1443},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2009},
     doi = {10.4171/jems/186},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/186/}
}
TY  - JOUR
AU  - Byung Gyun Kang
AU  - Dong Yeol Oh
TI  - Formal power series rings over a $\pi$-domain
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1429
EP  - 1443
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/186/
DO  - 10.4171/jems/186
ID  - JEMS_2009_11_6_a9
ER  - 
%0 Journal Article
%A Byung Gyun Kang
%A Dong Yeol Oh
%T Formal power series rings over a $\pi$-domain
%J Journal of the European Mathematical Society
%D 2009
%P 1429-1443
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/186/
%R 10.4171/jems/186
%F JEMS_2009_11_6_a9
Byung Gyun Kang; Dong Yeol Oh. Formal power series rings over a $\pi$-domain. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1429-1443. doi : 10.4171/jems/186. http://geodesic.mathdoc.fr/articles/10.4171/jems/186/

Cité par Sources :