Pólya's conjecture in the presence of a constant magnetic field
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1365-1383.

Voir la notice de l'article provenant de la source EMS Press

We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Pólya's conjecture is not true in the presence of a magnetic field.
DOI : 10.4171/jems/184
Classification : 35-XX, 00-XX
Keywords: Eigenvalue bounds, semi-classical estimates, Pólya's conjecture, Laplace operator, magnetic Schrödinger operators.
@article{JEMS_2009_11_6_a7,
     author = {Rupert L. Frank and Michael Loss and Timo Weidl},
     title = {P\'olya's conjecture in the presence of a constant magnetic field},
     journal = {Journal of the European Mathematical Society},
     pages = {1365--1383},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2009},
     doi = {10.4171/jems/184},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/184/}
}
TY  - JOUR
AU  - Rupert L. Frank
AU  - Michael Loss
AU  - Timo Weidl
TI  - Pólya's conjecture in the presence of a constant magnetic field
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1365
EP  - 1383
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/184/
DO  - 10.4171/jems/184
ID  - JEMS_2009_11_6_a7
ER  - 
%0 Journal Article
%A Rupert L. Frank
%A Michael Loss
%A Timo Weidl
%T Pólya's conjecture in the presence of a constant magnetic field
%J Journal of the European Mathematical Society
%D 2009
%P 1365-1383
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/184/
%R 10.4171/jems/184
%F JEMS_2009_11_6_a7
Rupert L. Frank; Michael Loss; Timo Weidl. Pólya's conjecture in the presence of a constant magnetic field. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1365-1383. doi : 10.4171/jems/184. http://geodesic.mathdoc.fr/articles/10.4171/jems/184/

Cité par Sources :