Pólya's conjecture in the presence of a constant magnetic field
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1365-1383
Cet article a éte moissonné depuis la source EMS Press
We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Pólya's conjecture is not true in the presence of a magnetic field.
Classification :
35-XX, 00-XX
Keywords: Eigenvalue bounds, semi-classical estimates, Pólya's conjecture, Laplace operator, magnetic Schrödinger operators.
Keywords: Eigenvalue bounds, semi-classical estimates, Pólya's conjecture, Laplace operator, magnetic Schrödinger operators.
@article{JEMS_2009_11_6_a7,
author = {Rupert L. Frank and Michael Loss and Timo Weidl},
title = {P\'olya's conjecture in the presence of a constant magnetic field},
journal = {Journal of the European Mathematical Society},
pages = {1365--1383},
year = {2009},
volume = {11},
number = {6},
doi = {10.4171/jems/184},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/184/}
}
TY - JOUR AU - Rupert L. Frank AU - Michael Loss AU - Timo Weidl TI - Pólya's conjecture in the presence of a constant magnetic field JO - Journal of the European Mathematical Society PY - 2009 SP - 1365 EP - 1383 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/184/ DO - 10.4171/jems/184 ID - JEMS_2009_11_6_a7 ER -
%0 Journal Article %A Rupert L. Frank %A Michael Loss %A Timo Weidl %T Pólya's conjecture in the presence of a constant magnetic field %J Journal of the European Mathematical Society %D 2009 %P 1365-1383 %V 11 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/184/ %R 10.4171/jems/184 %F JEMS_2009_11_6_a7
Rupert L. Frank; Michael Loss; Timo Weidl. Pólya's conjecture in the presence of a constant magnetic field. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1365-1383. doi: 10.4171/jems/184
Cité par Sources :