Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1285-1305
Cet article a éte moissonné depuis la source EMS Press
In considering a class of quasilinear elliptic equations on a Riemannian manifold with nonnegative Ricci curvature, we give a new proof of Tolksdorf's result on the construction of separable p-harmonic functions in a cone.
Classification :
35-XX, 00-XX, 58-XX
Keywords: p-harmonic functions, conical singularities, Ricci curvature, ergodic constant
Keywords: p-harmonic functions, conical singularities, Ricci curvature, ergodic constant
@article{JEMS_2009_11_6_a5,
author = {Alessio Porretta and Laurent V\'eron},
title = {Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds},
journal = {Journal of the European Mathematical Society},
pages = {1285--1305},
year = {2009},
volume = {11},
number = {6},
doi = {10.4171/jems/182},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/182/}
}
TY - JOUR AU - Alessio Porretta AU - Laurent Véron TI - Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds JO - Journal of the European Mathematical Society PY - 2009 SP - 1285 EP - 1305 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/182/ DO - 10.4171/jems/182 ID - JEMS_2009_11_6_a5 ER -
%0 Journal Article %A Alessio Porretta %A Laurent Véron %T Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds %J Journal of the European Mathematical Society %D 2009 %P 1285-1305 %V 11 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/182/ %R 10.4171/jems/182 %F JEMS_2009_11_6_a5
Alessio Porretta; Laurent Véron. Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1285-1305. doi: 10.4171/jems/182
Cité par Sources :