Metrical theory for $α$-Rosen fractions
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1259-1283.

Voir la notice de l'article provenant de la source EMS Press

The Rosen fractions form an infinite family which generalizes the nearest-integer continued fractions. In this paper we introduce a new class of continued fractions related to the Rosen fractions, the α-Rosen fractions. The metrical properties of these α-Rosen fractions are studied.
DOI : 10.4171/jems/181
Classification : 11-XX, 00-XX
Keywords: Rosen fractions, natural extension, Diophantine approximation
@article{JEMS_2009_11_6_a4,
     author = {Karma Dajani and Cor Kraaikamp and Wolfgang Steiner},
     title = {Metrical theory for $\ensuremath{\alpha}${-Rosen} fractions},
     journal = {Journal of the European Mathematical Society},
     pages = {1259--1283},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2009},
     doi = {10.4171/jems/181},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/181/}
}
TY  - JOUR
AU  - Karma Dajani
AU  - Cor Kraaikamp
AU  - Wolfgang Steiner
TI  - Metrical theory for $α$-Rosen fractions
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1259
EP  - 1283
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/181/
DO  - 10.4171/jems/181
ID  - JEMS_2009_11_6_a4
ER  - 
%0 Journal Article
%A Karma Dajani
%A Cor Kraaikamp
%A Wolfgang Steiner
%T Metrical theory for $α$-Rosen fractions
%J Journal of the European Mathematical Society
%D 2009
%P 1259-1283
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/181/
%R 10.4171/jems/181
%F JEMS_2009_11_6_a4
Karma Dajani; Cor Kraaikamp; Wolfgang Steiner. Metrical theory for $α$-Rosen fractions. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1259-1283. doi : 10.4171/jems/181. http://geodesic.mathdoc.fr/articles/10.4171/jems/181/

Cité par Sources :