Metrical theory for $α$-Rosen fractions
Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1259-1283
Cet article a éte moissonné depuis la source EMS Press
The Rosen fractions form an infinite family which generalizes the nearest-integer continued fractions. In this paper we introduce a new class of continued fractions related to the Rosen fractions, the α-Rosen fractions. The metrical properties of these α-Rosen fractions are studied.
Classification :
11-XX, 00-XX
Keywords: Rosen fractions, natural extension, Diophantine approximation
Keywords: Rosen fractions, natural extension, Diophantine approximation
@article{JEMS_2009_11_6_a4,
author = {Karma Dajani and Cor Kraaikamp and Wolfgang Steiner},
title = {Metrical theory for $\ensuremath{\alpha}${-Rosen} fractions},
journal = {Journal of the European Mathematical Society},
pages = {1259--1283},
year = {2009},
volume = {11},
number = {6},
doi = {10.4171/jems/181},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/181/}
}
TY - JOUR AU - Karma Dajani AU - Cor Kraaikamp AU - Wolfgang Steiner TI - Metrical theory for $α$-Rosen fractions JO - Journal of the European Mathematical Society PY - 2009 SP - 1259 EP - 1283 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/181/ DO - 10.4171/jems/181 ID - JEMS_2009_11_6_a4 ER -
Karma Dajani; Cor Kraaikamp; Wolfgang Steiner. Metrical theory for $α$-Rosen fractions. Journal of the European Mathematical Society, Tome 11 (2009) no. 6, pp. 1259-1283. doi: 10.4171/jems/181
Cité par Sources :