Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion
Journal of the European Mathematical Society, Tome 6 (2004) no. 4, pp. 483-527
Cet article a éte moissonné depuis la source EMS Press
Let Ω be a bounded domain of class C2 in RN and let K be a compact subset of ∂Ω. Assume that q≥(N+1)/(N−1) and denote by UK the maximal solution of −Δu+uq=0 in Ω which vanishes on ∂Ω∖K. We obtain sharp upper and lower estimates for UK in terms of the Bessel capacity C2/q,q′ and prove that UK is σ-moderate. In addition we describe the precise asymptotic behavior of UK at points σ∈K, which depends on the “density” of K at σ, measured in terms of the capacity C2/q,q′.
Classification :
35-XX, 31-XX, 00-XX
Keywords: Bessel capacities, maximal solutions, rate of blow-up
Keywords: Bessel capacities, maximal solutions, rate of blow-up
@article{JEMS_2004_6_4_a4,
author = {Moshe Marcus and Laurent V\'eron},
title = {Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion},
journal = {Journal of the European Mathematical Society},
pages = {483--527},
year = {2004},
volume = {6},
number = {4},
doi = {10.4171/jems/18},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/18/}
}
TY - JOUR AU - Moshe Marcus AU - Laurent Véron TI - Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion JO - Journal of the European Mathematical Society PY - 2004 SP - 483 EP - 527 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/18/ DO - 10.4171/jems/18 ID - JEMS_2004_6_4_a4 ER -
%0 Journal Article %A Moshe Marcus %A Laurent Véron %T Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion %J Journal of the European Mathematical Society %D 2004 %P 483-527 %V 6 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/18/ %R 10.4171/jems/18 %F JEMS_2004_6_4_a4
Moshe Marcus; Laurent Véron. Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion. Journal of the European Mathematical Society, Tome 6 (2004) no. 4, pp. 483-527. doi: 10.4171/jems/18
Cité par Sources :