Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1057-1103.

Voir la notice de l'article provenant de la source EMS Press

We prove that Cayley graphs of SLd​(Z/pnZ) are expanders with respect to the projection of any fixed elements in SLd​(Z) generating a Zariski dense subgroup.
DOI : 10.4171/jems/175
Classification : 20-XX, 05-XX, 68-XX, 00-XX
@article{JEMS_2009_11_5_a4,
     author = {Jean Bourgain and Alex Gamburd},
     title = {Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: {II}},
     journal = {Journal of the European Mathematical Society},
     pages = {1057--1103},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2009},
     doi = {10.4171/jems/175},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/175/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Alex Gamburd
TI  - Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1057
EP  - 1103
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/175/
DO  - 10.4171/jems/175
ID  - JEMS_2009_11_5_a4
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
%J Journal of the European Mathematical Society
%D 2009
%P 1057-1103
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/175/
%R 10.4171/jems/175
%F JEMS_2009_11_5_a4
Jean Bourgain; Alex Gamburd. Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1057-1103. doi : 10.4171/jems/175. http://geodesic.mathdoc.fr/articles/10.4171/jems/175/

Cité par Sources :