Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1057-1103
Cet article a éte moissonné depuis la source EMS Press
We prove that Cayley graphs of SLd(Z/pnZ) are expanders with respect to the projection of any fixed elements in SLd(Z) generating a Zariski dense subgroup.
@article{JEMS_2009_11_5_a4,
author = {Jean Bourgain and Alex Gamburd},
title = {Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: {II}},
journal = {Journal of the European Mathematical Society},
pages = {1057--1103},
year = {2009},
volume = {11},
number = {5},
doi = {10.4171/jems/175},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/175/}
}
TY - JOUR
AU - Jean Bourgain
AU - Alex Gamburd
TI - Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
JO - Journal of the European Mathematical Society
PY - 2009
SP - 1057
EP - 1103
VL - 11
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/175/
DO - 10.4171/jems/175
ID - JEMS_2009_11_5_a4
ER -
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II
%J Journal of the European Mathematical Society
%D 2009
%P 1057-1103
%V 11
%N 5
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/175/
%R 10.4171/jems/175
%F JEMS_2009_11_5_a4
Jean Bourgain; Alex Gamburd. Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n \mathbb{Z})$: II. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1057-1103. doi: 10.4171/jems/175
Cité par Sources :