Holomorphic functions and subelliptic heat kernels over Lie groups
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 941-978.

Voir la notice de l'article provenant de la source EMS Press

A Hermitian form q on the dual space, g∗, of the Lie algebra, g, of a Lie group, G, determines a sub-Laplacian, Δ, on G. It will be shown that Hörmander’s condition for hypoellipticity of the sub-Laplacian holds if and only if the associated Hermitian form, induced by q on the dual of the universal enveloping algebra, U′, is non-degenerate. The subelliptic heat semigroup, etΔ/4, is given by convolution by a C∞ probability density ρt​. When G is complex and u:G→C is a holomorphic function, the collection of derivatives of u at the identity in G gives rise to an element, u^(e)∈U′. We will show that if G is complex, connected, and simply connected then the “Taylor” map, u↦u^(e), defines a unitary map from the space of holomorphic functions in L2(G,ρt​) onto a natural Hilbert space lying in U′.
DOI : 10.4171/jems/171
Classification : 32-XX, 00-XX
Keywords: Subelliptic, heat kernel, complex groups, universal enveloping algebra, Taylor map Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2009_11_5_a0,
     author = {Bruce K. Driver and Leonard Gross and Laurent Saloff-Coste},
     title = {Holomorphic functions and subelliptic heat kernels over {Lie} groups},
     journal = {Journal of the European Mathematical Society},
     pages = {941--978},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2009},
     doi = {10.4171/jems/171},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/171/}
}
TY  - JOUR
AU  - Bruce K. Driver
AU  - Leonard Gross
AU  - Laurent Saloff-Coste
TI  - Holomorphic functions and subelliptic heat kernels over Lie groups
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 941
EP  - 978
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/171/
DO  - 10.4171/jems/171
ID  - JEMS_2009_11_5_a0
ER  - 
%0 Journal Article
%A Bruce K. Driver
%A Leonard Gross
%A Laurent Saloff-Coste
%T Holomorphic functions and subelliptic heat kernels over Lie groups
%J Journal of the European Mathematical Society
%D 2009
%P 941-978
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/171/
%R 10.4171/jems/171
%F JEMS_2009_11_5_a0
Bruce K. Driver; Leonard Gross; Laurent Saloff-Coste. Holomorphic functions and subelliptic heat kernels over Lie groups. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 941-978. doi : 10.4171/jems/171. http://geodesic.mathdoc.fr/articles/10.4171/jems/171/

Cité par Sources :