Holomorphic functions and subelliptic heat kernels over Lie groups
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 941-978
Cet article a éte moissonné depuis la source EMS Press
A Hermitian form q on the dual space, g∗, of the Lie algebra, g, of a Lie group, G, determines a sub-Laplacian, Δ, on G. It will be shown that Hörmander’s condition for hypoellipticity of the sub-Laplacian holds if and only if the associated Hermitian form, induced by q on the dual of the universal enveloping algebra, U′, is non-degenerate. The subelliptic heat semigroup, etΔ/4, is given by convolution by a C∞ probability density ρt. When G is complex and u:G→C is a holomorphic function, the collection of derivatives of u at the identity in G gives rise to an element, u^(e)∈U′. We will show that if G is complex, connected, and simply connected then the “Taylor” map, u↦u^(e), defines a unitary map from the space of holomorphic functions in L2(G,ρt) onto a natural Hilbert space lying in U′.
Classification :
32-XX, 00-XX
Keywords: Subelliptic, heat kernel, complex groups, universal enveloping algebra, Taylor map Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
Keywords: Subelliptic, heat kernel, complex groups, universal enveloping algebra, Taylor map Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2009_11_5_a0,
author = {Bruce K. Driver and Leonard Gross and Laurent Saloff-Coste},
title = {Holomorphic functions and subelliptic heat kernels over {Lie} groups},
journal = {Journal of the European Mathematical Society},
pages = {941--978},
year = {2009},
volume = {11},
number = {5},
doi = {10.4171/jems/171},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/171/}
}
TY - JOUR AU - Bruce K. Driver AU - Leonard Gross AU - Laurent Saloff-Coste TI - Holomorphic functions and subelliptic heat kernels over Lie groups JO - Journal of the European Mathematical Society PY - 2009 SP - 941 EP - 978 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/171/ DO - 10.4171/jems/171 ID - JEMS_2009_11_5_a0 ER -
%0 Journal Article %A Bruce K. Driver %A Leonard Gross %A Laurent Saloff-Coste %T Holomorphic functions and subelliptic heat kernels over Lie groups %J Journal of the European Mathematical Society %D 2009 %P 941-978 %V 11 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/171/ %R 10.4171/jems/171 %F JEMS_2009_11_5_a0
Bruce K. Driver; Leonard Gross; Laurent Saloff-Coste. Holomorphic functions and subelliptic heat kernels over Lie groups. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 941-978. doi: 10.4171/jems/171
Cité par Sources :