Hypersurfaces in $\mathbb{H}^{n+1}$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems
Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 903-939.

Voir la notice de l'article provenant de la source EMS Press

Our first objective in this paper is to give a natural formulation of the Christoffel problem for hypersurfaces in Hn+​1, by means of the hyperbolic Gauss map and the notion of hyperbolic curvature radii for hypersurfaces. Our second objective is to provide an explicit equivalence of this Christoffel problem with the famous problem of prescribing scalar curvature on Sn for conformal metrics, posed by Nirenberg and Kazdan–Warner. This construction lets us translate into the hyperbolic setting the known results for the scalar curvature problem, and also provides a hypersurface theory interpretation of such an intrinsic problem from conformal geometry. Our third objective is to place the above result in a more general framework. Specifically, we will show how the problem of prescribing the hyperbolic Gauss map and a given function of the hyperbolic curvature radii in Hn+​1 is strongly related to some important problems on conformally invariant PDEs in terms of the Schouten tensor. This provides a bridge between the theory of conformal metrics on Sn and the theory of hypersurfaces with prescribed hyperbolic Gauss map in Hn+​1. The fourth objective is to use the above correspondence to prove that for a wide family of Weingarten functionals W(κ1​,...,κn​), the only compact immersed hypersurfaces in Hn+​1 on which W is constant are round spheres.
DOI : 10.4171/jems/170
Classification : 53-XX, 00-XX
Keywords: Christoffel problem, Nirenberg problem, Kazdan-Warner conditions, Schouten tensor, hyperbolic Gauss map, Weingarten hypersurfaces
@article{JEMS_2009_11_4_a6,
     author = {Jos\'e M. Espinar and Jos\'e A. G\'alvez and Pablo Mira},
     title = {Hypersurfaces in $\mathbb{H}^{n+1}$ and conformally invariant equations: the generalized {Christoffel} and {Nirenberg} problems},
     journal = {Journal of the European Mathematical Society},
     pages = {903--939},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2009},
     doi = {10.4171/jems/170},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/170/}
}
TY  - JOUR
AU  - José M. Espinar
AU  - José A. Gálvez
AU  - Pablo Mira
TI  - Hypersurfaces in $\mathbb{H}^{n+1}$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 903
EP  - 939
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/170/
DO  - 10.4171/jems/170
ID  - JEMS_2009_11_4_a6
ER  - 
%0 Journal Article
%A José M. Espinar
%A José A. Gálvez
%A Pablo Mira
%T Hypersurfaces in $\mathbb{H}^{n+1}$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems
%J Journal of the European Mathematical Society
%D 2009
%P 903-939
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/170/
%R 10.4171/jems/170
%F JEMS_2009_11_4_a6
José M. Espinar; José A. Gálvez; Pablo Mira. Hypersurfaces in $\mathbb{H}^{n+1}$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems. Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 903-939. doi : 10.4171/jems/170. http://geodesic.mathdoc.fr/articles/10.4171/jems/170/

Cité par Sources :