Skeletons, bodies and generalized $E(R)$-algebras
Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 845-901.

Voir la notice de l'article provenant de la source EMS Press

In this paper we want to solve a fifty year old problem on R-algebras over cotorsionfree commutative rings R with 1. For simplicity (but only for the abstract) we will assume that R is any countable principal ideal domain, but not a field. For example R can be the ring Z or the polynomial ring Q[x]. An R-algebra A is called a generalized E(R)-algebra if its algebra End_R_ A of R-module endomorphisms of the underlying R-module RA is isomorphic to A (as an R-algebra). Properties, including the existence of such algebras are derived in various papers ([5, 6, 9, 10, 20, 22, 24, 25]). The study was stimulated by Fuchs [13], and specially by Schultz [26]. But due to [26] the investigation concentrated on ordinary commutative E(R)-algebras. A substantial part of problem 45 (p. 232) in the monograph [13] (repeated in later publications, e.g. [27]), which will be answered positively for all rings R above in this paper, remained open:
DOI : 10.4171/jems/169
Classification : 20-XX, 16-XX, 00-XX
Keywords: Endomorphism rings, indecomposable modules, E-rings
@article{JEMS_2009_11_4_a5,
     author = {R\"udiger G\"obel and Daniel Herden and Saharon Shelah},
     title = {Skeletons, bodies and generalized $E(R)$-algebras},
     journal = {Journal of the European Mathematical Society},
     pages = {845--901},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2009},
     doi = {10.4171/jems/169},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/169/}
}
TY  - JOUR
AU  - Rüdiger Göbel
AU  - Daniel Herden
AU  - Saharon Shelah
TI  - Skeletons, bodies and generalized $E(R)$-algebras
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 845
EP  - 901
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/169/
DO  - 10.4171/jems/169
ID  - JEMS_2009_11_4_a5
ER  - 
%0 Journal Article
%A Rüdiger Göbel
%A Daniel Herden
%A Saharon Shelah
%T Skeletons, bodies and generalized $E(R)$-algebras
%J Journal of the European Mathematical Society
%D 2009
%P 845-901
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/169/
%R 10.4171/jems/169
%F JEMS_2009_11_4_a5
Rüdiger Göbel; Daniel Herden; Saharon Shelah. Skeletons, bodies and generalized $E(R)$-algebras. Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 845-901. doi : 10.4171/jems/169. http://geodesic.mathdoc.fr/articles/10.4171/jems/169/

Cité par Sources :