Critical points via Γ-convergence: general theory and applications
Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 705-753.

Voir la notice de l'article provenant de la source EMS Press

It is well-known that Γ-convergence of functionals provides a tool for studying global and local minimizers. Here we present a general result establishing the existence of critical points of a Γ-converging sequence of functionals provided the associated Γ-limit possesses a nondegenerate critical point, subject to certain mild additional hypotheses. We then go on to prove a theorem that describes suitable nondegenerate critical points for functionals, involving the arclength of a limiting singular set, that arise as Γ-limits in a number of problems. Finally, we apply the general theory to prove some new results, and give new proofs of some known results, establishing the existence of critical points of the 2d Modica–Mortola (Allen–Cahn) energy and 3d Ginzburg–Landau energy with and without magnetic field, and various generalizations, all in a unified framework.
DOI : 10.4171/jems/164
Classification : 49-XX, 00-XX
Keywords: Gamma-convergence, critical points, Allen–Cahn, Ginzburg–Landau
@article{JEMS_2009_11_4_a0,
     author = {Robert L. Jerrard and Peter Sternberg},
     title = {Critical points via {\ensuremath{\Gamma}-convergence:} general theory and applications},
     journal = {Journal of the European Mathematical Society},
     pages = {705--753},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2009},
     doi = {10.4171/jems/164},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/164/}
}
TY  - JOUR
AU  - Robert L. Jerrard
AU  - Peter Sternberg
TI  - Critical points via Γ-convergence: general theory and applications
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 705
EP  - 753
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/164/
DO  - 10.4171/jems/164
ID  - JEMS_2009_11_4_a0
ER  - 
%0 Journal Article
%A Robert L. Jerrard
%A Peter Sternberg
%T Critical points via Γ-convergence: general theory and applications
%J Journal of the European Mathematical Society
%D 2009
%P 705-753
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/164/
%R 10.4171/jems/164
%F JEMS_2009_11_4_a0
Robert L. Jerrard; Peter Sternberg. Critical points via Γ-convergence: general theory and applications. Journal of the European Mathematical Society, Tome 11 (2009) no. 4, pp. 705-753. doi : 10.4171/jems/164. http://geodesic.mathdoc.fr/articles/10.4171/jems/164/

Cité par Sources :