Cycles on algebraic models of smooth manifolds
Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 393-405.

Voir la notice de l'article provenant de la source EMS Press

Every compact smooth manifold M is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of M. We study modulo 2 homology classes represented by algebraic subsets of X, as X runs through the class of all algebraic models of M. Our main result concerns the case where M is a spin manifold.
DOI : 10.4171/jems/154
Classification : 58-XX, 14-XX, 00-XX
Keywords: Real algebraic sets, algebraic cohomology classes, algebraic models
@article{JEMS_2009_11_2_a6,
     author = {Wojciech Kucharz},
     title = {Cycles on algebraic models of smooth manifolds},
     journal = {Journal of the European Mathematical Society},
     pages = {393--405},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4171/jems/154},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/154/}
}
TY  - JOUR
AU  - Wojciech Kucharz
TI  - Cycles on algebraic models of smooth manifolds
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 393
EP  - 405
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/154/
DO  - 10.4171/jems/154
ID  - JEMS_2009_11_2_a6
ER  - 
%0 Journal Article
%A Wojciech Kucharz
%T Cycles on algebraic models of smooth manifolds
%J Journal of the European Mathematical Society
%D 2009
%P 393-405
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/154/
%R 10.4171/jems/154
%F JEMS_2009_11_2_a6
Wojciech Kucharz. Cycles on algebraic models of smooth manifolds. Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 393-405. doi : 10.4171/jems/154. http://geodesic.mathdoc.fr/articles/10.4171/jems/154/

Cité par Sources :