Polarizations of Prym varieties for Weyl groups via abelianization
Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 315-349
Cet article a éte moissonné depuis la source EMS Press
Let π:Z→X be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply connected Lie group G. For any dominant weight λ consider the curve Y=Z/Stab(λ). The Kanev correspondence defines an abelian subvariety Pλ of the Jacobian of Y. We compute the type of the polarization of the restriction of the canonical principal polarization of Jac(Y) to Pλ in some cases. In particular, in the case of the group E8 we obtain families of Prym-Tyurin varieties. The main idea is the use of an abelianization map of the Donagi–Prym variety to the moduli stack of principal G-bundles on the curve X.
Classification :
14-XX, 00-XX
Keywords: Prym variety, principal G-bundle, abelianization, moduli stack
Keywords: Prym variety, principal G-bundle, abelianization, moduli stack
@article{JEMS_2009_11_2_a4,
author = {Herbert Lange and Christian Pauly},
title = {Polarizations of {Prym} varieties for {Weyl} groups via abelianization},
journal = {Journal of the European Mathematical Society},
pages = {315--349},
year = {2009},
volume = {11},
number = {2},
doi = {10.4171/jems/152},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/152/}
}
TY - JOUR AU - Herbert Lange AU - Christian Pauly TI - Polarizations of Prym varieties for Weyl groups via abelianization JO - Journal of the European Mathematical Society PY - 2009 SP - 315 EP - 349 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/152/ DO - 10.4171/jems/152 ID - JEMS_2009_11_2_a4 ER -
%0 Journal Article %A Herbert Lange %A Christian Pauly %T Polarizations of Prym varieties for Weyl groups via abelianization %J Journal of the European Mathematical Society %D 2009 %P 315-349 %V 11 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/152/ %R 10.4171/jems/152 %F JEMS_2009_11_2_a4
Herbert Lange; Christian Pauly. Polarizations of Prym varieties for Weyl groups via abelianization. Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 315-349. doi: 10.4171/jems/152
Cité par Sources :