Three-space problems for the approximation property
Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 273-282.

Voir la notice de l'article provenant de la source EMS Press

It is shown that there is a subspace Zq​ of lq​ for 12 which is isomorphic to lq​ such that lq​/Zq​ does not have the approximation property. On the other hand, for 2∞ there is a subspace Yp​ of lp​ such that Yp​ does not have the approximation property (AP) but the quotient space lp​/Yp​ is isomorphic to lp​ . The result is obtained by defining random "Enflo-Davie spaces" Yp​ which with full probability fail AP for all 2≤∞ and have AP for all 1≤p≤2. For 1≤ 2, Yp​ are isomorphic to lp​.
DOI : 10.4171/jems/150
Classification : 46-XX, 00-XX
Keywords: Quotients of Banach spaces, approximation property
@article{JEMS_2009_11_2_a2,
     author = {A. Szankowski},
     title = {Three-space problems for the approximation property},
     journal = {Journal of the European Mathematical Society},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4171/jems/150},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/150/}
}
TY  - JOUR
AU  - A. Szankowski
TI  - Three-space problems for the approximation property
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 273
EP  - 282
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/150/
DO  - 10.4171/jems/150
ID  - JEMS_2009_11_2_a2
ER  - 
%0 Journal Article
%A A. Szankowski
%T Three-space problems for the approximation property
%J Journal of the European Mathematical Society
%D 2009
%P 273-282
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/150/
%R 10.4171/jems/150
%F JEMS_2009_11_2_a2
A. Szankowski. Three-space problems for the approximation property. Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 273-282. doi : 10.4171/jems/150. http://geodesic.mathdoc.fr/articles/10.4171/jems/150/

Cité par Sources :