On the stabilization problem for nonholonomic distributions
Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 223-255
Cet article a éte moissonné depuis la source EMS Press
Let M be a smooth connected and complete manifold of dimension n, and Δ be a smooth nonholonomic distribution of rank m≤n on M. We prove that, if there exists a smooth Riemannian metric on Δ for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of Δ on M. Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of nonsmooth analysis, of an optimal control problem of Bolza type, for which we prove that the corresponding value function is semiconcave and is a viscosity solution of a Hamilton-Jacobi equation, and establish fine properties of optimal trajectories.
Classification :
93-XX, 34-XX, 00-XX
Keywords: Nonholonomic distributions, stabilization, SRS feedback, minimizing singular path, Martinet case, nonsmooth analysis
Keywords: Nonholonomic distributions, stabilization, SRS feedback, minimizing singular path, Martinet case, nonsmooth analysis
@article{JEMS_2009_11_2_a0,
author = {Ludovic Rifford and Emmanuel Tr\'elat},
title = {On the stabilization problem for nonholonomic distributions},
journal = {Journal of the European Mathematical Society},
pages = {223--255},
year = {2009},
volume = {11},
number = {2},
doi = {10.4171/jems/148},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/148/}
}
TY - JOUR AU - Ludovic Rifford AU - Emmanuel Trélat TI - On the stabilization problem for nonholonomic distributions JO - Journal of the European Mathematical Society PY - 2009 SP - 223 EP - 255 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/148/ DO - 10.4171/jems/148 ID - JEMS_2009_11_2_a0 ER -
Ludovic Rifford; Emmanuel Trélat. On the stabilization problem for nonholonomic distributions. Journal of the European Mathematical Society, Tome 11 (2009) no. 2, pp. 223-255. doi: 10.4171/jems/148
Cité par Sources :