Liouville theorems for self-similar solutions of heat flows
Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 207-221
Cet article a éte moissonné depuis la source EMS Press
Let N be a compact Riemannian manifold. A quasi-harmonic sphere is a harmonic map from (Rm,e−∣x∣2/2(m−2)ds02) to N (m≥3) with finite energy ([LnW]). Here ds02 is the Euclidean metric in Rm. It arises from the blow-up analysis of the heat flow at a singular point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It is clear that the Liouville theorems imply the existence of the heat flow to the target N. We also derive gradient estimates and Liouville theorems for positive quasi-harmonic functions.
Classification :
35-XX, 58-XX, 00-XX
Keywords: Harmonic sphere, self-similar solution, quasi-harmonic sphere, heat flow
Keywords: Harmonic sphere, self-similar solution, quasi-harmonic sphere, heat flow
@article{JEMS_2009_11_1_a4,
author = {Jiayu Li and Meng Wang},
title = {Liouville theorems for self-similar solutions of heat flows},
journal = {Journal of the European Mathematical Society},
pages = {207--221},
year = {2009},
volume = {11},
number = {1},
doi = {10.4171/jems/147},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/147/}
}
TY - JOUR AU - Jiayu Li AU - Meng Wang TI - Liouville theorems for self-similar solutions of heat flows JO - Journal of the European Mathematical Society PY - 2009 SP - 207 EP - 221 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/147/ DO - 10.4171/jems/147 ID - JEMS_2009_11_1_a4 ER -
Jiayu Li; Meng Wang. Liouville theorems for self-similar solutions of heat flows. Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 207-221. doi: 10.4171/jems/147
Cité par Sources :