Liouville theorems for self-similar solutions of heat flows
Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 207-221.

Voir la notice de l'article provenant de la source EMS Press

Let N be a compact Riemannian manifold. A quasi-harmonic sphere is a harmonic map from (Rm,e−∣x∣2/2(m−2)ds02​) to N (m≥3) with finite energy ([LnW]). Here ds02​ is the Euclidean metric in Rm. It arises from the blow-up analysis of the heat flow at a singular point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It is clear that the Liouville theorems imply the existence of the heat flow to the target N. We also derive gradient estimates and Liouville theorems for positive quasi-harmonic functions.
DOI : 10.4171/jems/147
Classification : 35-XX, 58-XX, 00-XX
Keywords: Harmonic sphere, self-similar solution, quasi-harmonic sphere, heat flow
@article{JEMS_2009_11_1_a4,
     author = {Jiayu Li and Meng Wang},
     title = {Liouville theorems for self-similar solutions of heat flows},
     journal = {Journal of the European Mathematical Society},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4171/jems/147},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/147/}
}
TY  - JOUR
AU  - Jiayu Li
AU  - Meng Wang
TI  - Liouville theorems for self-similar solutions of heat flows
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 207
EP  - 221
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/147/
DO  - 10.4171/jems/147
ID  - JEMS_2009_11_1_a4
ER  - 
%0 Journal Article
%A Jiayu Li
%A Meng Wang
%T Liouville theorems for self-similar solutions of heat flows
%J Journal of the European Mathematical Society
%D 2009
%P 207-221
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/147/
%R 10.4171/jems/147
%F JEMS_2009_11_1_a4
Jiayu Li; Meng Wang. Liouville theorems for self-similar solutions of heat flows. Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 207-221. doi : 10.4171/jems/147. http://geodesic.mathdoc.fr/articles/10.4171/jems/147/

Cité par Sources :