Non-generic blow-up solutions for the critical focusing NLS in 1-D
Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 1-125.

Voir la notice de l'article provenant de la source EMS Press

We consider the L2-critical focussing nonlinear Schrödinger equation in 1+1-D. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a co-dimension one stable blow up manifold in the measurable category.
DOI : 10.4171/jems/143
Classification : 35-XX, 00-XX
Keywords: Nonlinear Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2009_11_1_a0,
     author = {Joachim Krieger and Wilhelm Schlag},
     title = {Non-generic blow-up solutions for the critical focusing {NLS} in {1-D}},
     journal = {Journal of the European Mathematical Society},
     pages = {1--125},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4171/jems/143},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/143/}
}
TY  - JOUR
AU  - Joachim Krieger
AU  - Wilhelm Schlag
TI  - Non-generic blow-up solutions for the critical focusing NLS in 1-D
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1
EP  - 125
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/143/
DO  - 10.4171/jems/143
ID  - JEMS_2009_11_1_a0
ER  - 
%0 Journal Article
%A Joachim Krieger
%A Wilhelm Schlag
%T Non-generic blow-up solutions for the critical focusing NLS in 1-D
%J Journal of the European Mathematical Society
%D 2009
%P 1-125
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/143/
%R 10.4171/jems/143
%F JEMS_2009_11_1_a0
Joachim Krieger; Wilhelm Schlag. Non-generic blow-up solutions for the critical focusing NLS in 1-D. Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 1-125. doi : 10.4171/jems/143. http://geodesic.mathdoc.fr/articles/10.4171/jems/143/

Cité par Sources :