Non-generic blow-up solutions for the critical focusing NLS in 1-D
Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 1-125
Cet article a éte moissonné depuis la source EMS Press
We consider the L2-critical focussing nonlinear Schrödinger equation in 1+1-D. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a co-dimension one stable blow up manifold in the measurable category.
Classification :
35-XX, 00-XX
Keywords: Nonlinear Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
Keywords: Nonlinear Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2009_11_1_a0,
author = {Joachim Krieger and Wilhelm Schlag},
title = {Non-generic blow-up solutions for the critical focusing {NLS} in {1-D}},
journal = {Journal of the European Mathematical Society},
pages = {1--125},
year = {2009},
volume = {11},
number = {1},
doi = {10.4171/jems/143},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/143/}
}
TY - JOUR AU - Joachim Krieger AU - Wilhelm Schlag TI - Non-generic blow-up solutions for the critical focusing NLS in 1-D JO - Journal of the European Mathematical Society PY - 2009 SP - 1 EP - 125 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/143/ DO - 10.4171/jems/143 ID - JEMS_2009_11_1_a0 ER -
Joachim Krieger; Wilhelm Schlag. Non-generic blow-up solutions for the critical focusing NLS in 1-D. Journal of the European Mathematical Society, Tome 11 (2009) no. 1, pp. 1-125. doi: 10.4171/jems/143
Cité par Sources :