Some aspects of the variational nature of mean curvature flow
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 1013-1036
Cet article a éte moissonné depuis la source EMS Press
We show that the classical solution of the heat equation can be seen as the minimizer of a suitable functional defined in space-time. Using similar ideas, we introduce a functional F on the class of space-time tracks of moving hypersurfaces, and we study suitable minimization problems related with F. We show some connections between minimizers of F and mean curvature flow.
Classification :
49-XX, 35-XX, 53-XX, 00-XX
Keywords: Heat equation, space-time energy minimizers, mean curvature flow
Keywords: Heat equation, space-time energy minimizers, mean curvature flow
@article{JEMS_2008_10_4_a5,
author = {Giovanni Bellettini and Luca Mugnai},
title = {Some aspects of the variational nature of mean curvature flow},
journal = {Journal of the European Mathematical Society},
pages = {1013--1036},
year = {2008},
volume = {10},
number = {4},
doi = {10.4171/jems/138},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/138/}
}
TY - JOUR AU - Giovanni Bellettini AU - Luca Mugnai TI - Some aspects of the variational nature of mean curvature flow JO - Journal of the European Mathematical Society PY - 2008 SP - 1013 EP - 1036 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/138/ DO - 10.4171/jems/138 ID - JEMS_2008_10_4_a5 ER -
Giovanni Bellettini; Luca Mugnai. Some aspects of the variational nature of mean curvature flow. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 1013-1036. doi: 10.4171/jems/138
Cité par Sources :