Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 987-1011
Cet article a éte moissonné depuis la source EMS Press
We prove that Cayley graphs of SL2(Z/pnZ) are expanders with respect to the projection of any fixed elements in SL2(Z) generating a Zariski-dense subgroup.
@article{JEMS_2008_10_4_a4,
author = {Jean Bourgain and Alex Gamburd},
title = {Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{\ensuremath{\mathbb{Z}}})$: {I}},
journal = {Journal of the European Mathematical Society},
pages = {987--1011},
year = {2008},
volume = {10},
number = {4},
doi = {10.4171/jems/137},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/137/}
}
TY - JOUR
AU - Jean Bourgain
AU - Alex Gamburd
TI - Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
JO - Journal of the European Mathematical Society
PY - 2008
SP - 987
EP - 1011
VL - 10
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/137/
DO - 10.4171/jems/137
ID - JEMS_2008_10_4_a4
ER -
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
%J Journal of the European Mathematical Society
%D 2008
%P 987-1011
%V 10
%N 4
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/137/
%R 10.4171/jems/137
%F JEMS_2008_10_4_a4
Jean Bourgain; Alex Gamburd. Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 987-1011. doi: 10.4171/jems/137
Cité par Sources :