Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 987-1011.

Voir la notice de l'article provenant de la source EMS Press

We prove that Cayley graphs of SL2​(Z/pnZ) are expanders with respect to the projection of any fixed elements in SL2​(Z) generating a Zariski-dense subgroup.
DOI : 10.4171/jems/137
Classification : 20-XX, 05-XX, 68-XX, 00-XX
@article{JEMS_2008_10_4_a4,
     author = {Jean Bourgain and Alex Gamburd},
     title = {Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{\ensuremath{\mathbb{Z}}})$: {I}},
     journal = {Journal of the European Mathematical Society},
     pages = {987--1011},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2008},
     doi = {10.4171/jems/137},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/137/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Alex Gamburd
TI  - Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 987
EP  - 1011
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/137/
DO  - 10.4171/jems/137
ID  - JEMS_2008_10_4_a4
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I
%J Journal of the European Mathematical Society
%D 2008
%P 987-1011
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/137/
%R 10.4171/jems/137
%F JEMS_2008_10_4_a4
Jean Bourgain; Alex Gamburd. Expansion and random walks in $\mathrm{SL}_d(\mathbb{Z}/p^n\mathbb{ℤ})$: I. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 987-1011. doi : 10.4171/jems/137. http://geodesic.mathdoc.fr/articles/10.4171/jems/137/

Cité par Sources :