Large data local solutions for the derivative NLS equation
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 957-985
Cet article a éte moissonné depuis la source EMS Press
We consider the Derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n=2. Here we prove a similar result for large initial data in all dimensions n≥2.
@article{JEMS_2008_10_4_a3,
author = {Ioan Bejenaru and Daniel Tataru},
title = {Large data local solutions for the derivative {NLS} equation},
journal = {Journal of the European Mathematical Society},
pages = {957--985},
year = {2008},
volume = {10},
number = {4},
doi = {10.4171/jems/136},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/136/}
}
TY - JOUR AU - Ioan Bejenaru AU - Daniel Tataru TI - Large data local solutions for the derivative NLS equation JO - Journal of the European Mathematical Society PY - 2008 SP - 957 EP - 985 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/136/ DO - 10.4171/jems/136 ID - JEMS_2008_10_4_a3 ER -
Ioan Bejenaru; Daniel Tataru. Large data local solutions for the derivative NLS equation. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 957-985. doi: 10.4171/jems/136
Cité par Sources :