Large data local solutions for the derivative NLS equation
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 957-985.

Voir la notice de l'article provenant de la source EMS Press

We consider the Derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n=2. Here we prove a similar result for large initial data in all dimensions n≥2.
DOI : 10.4171/jems/136
Classification : 35-XX, 00-XX
@article{JEMS_2008_10_4_a3,
     author = {Ioan Bejenaru and Daniel Tataru},
     title = {Large data local solutions for the derivative {NLS} equation},
     journal = {Journal of the European Mathematical Society},
     pages = {957--985},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2008},
     doi = {10.4171/jems/136},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/136/}
}
TY  - JOUR
AU  - Ioan Bejenaru
AU  - Daniel Tataru
TI  - Large data local solutions for the derivative NLS equation
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 957
EP  - 985
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/136/
DO  - 10.4171/jems/136
ID  - JEMS_2008_10_4_a3
ER  - 
%0 Journal Article
%A Ioan Bejenaru
%A Daniel Tataru
%T Large data local solutions for the derivative NLS equation
%J Journal of the European Mathematical Society
%D 2008
%P 957-985
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/136/
%R 10.4171/jems/136
%F JEMS_2008_10_4_a3
Ioan Bejenaru; Daniel Tataru. Large data local solutions for the derivative NLS equation. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 957-985. doi : 10.4171/jems/136. http://geodesic.mathdoc.fr/articles/10.4171/jems/136/

Cité par Sources :