Estimates for $L^1$-vector fields under higher-order differential conditions
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 867-882.

Voir la notice de l'article provenant de la source EMS Press

We prove that an L1 vector field whose components satisfy some condition on k-th order derivatives induce linear functionals on the Sobolev space W1,n(Rn). Two proofs are provided, relying on the two distinct methods developed by Bourgain and Brezis (J.\ Eur.\ Math.\ Soc.\ (JEMS), to appear) and by the author (C.\ R.\ Math.\ Acad.\ Sci.\ Paris, 2004) to prove the same result for divergence-free vector fields and partial extensions to higher-order conditions.
DOI : 10.4171/jems/133
Classification : 46-XX, 00-XX
Keywords: Critical Sobolev spaces, compensation, Sobolev inequality, Korn–Sobolev inequality Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2008_10_4_a0,
     author = {Jean Van Schaftingen},
     title = {Estimates for $L^1$-vector fields under higher-order differential conditions},
     journal = {Journal of the European Mathematical Society},
     pages = {867--882},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2008},
     doi = {10.4171/jems/133},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/133/}
}
TY  - JOUR
AU  - Jean Van Schaftingen
TI  - Estimates for $L^1$-vector fields under higher-order differential conditions
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 867
EP  - 882
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/133/
DO  - 10.4171/jems/133
ID  - JEMS_2008_10_4_a0
ER  - 
%0 Journal Article
%A Jean Van Schaftingen
%T Estimates for $L^1$-vector fields under higher-order differential conditions
%J Journal of the European Mathematical Society
%D 2008
%P 867-882
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/133/
%R 10.4171/jems/133
%F JEMS_2008_10_4_a0
Jean Van Schaftingen. Estimates for $L^1$-vector fields under higher-order differential conditions. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 867-882. doi : 10.4171/jems/133. http://geodesic.mathdoc.fr/articles/10.4171/jems/133/

Cité par Sources :