Estimates for $L^1$-vector fields under higher-order differential conditions
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 867-882
Cet article a éte moissonné depuis la source EMS Press
We prove that an L1 vector field whose components satisfy some condition on k-th order derivatives induce linear functionals on the Sobolev space W1,n(Rn). Two proofs are provided, relying on the two distinct methods developed by Bourgain and Brezis (J.\ Eur.\ Math.\ Soc.\ (JEMS), to appear) and by the author (C.\ R.\ Math.\ Acad.\ Sci.\ Paris, 2004) to prove the same result for divergence-free vector fields and partial extensions to higher-order conditions.
Classification :
46-XX, 00-XX
Keywords: Critical Sobolev spaces, compensation, Sobolev inequality, Korn–Sobolev inequality Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
Keywords: Critical Sobolev spaces, compensation, Sobolev inequality, Korn–Sobolev inequality Schrödinger equations, L2-critical NLS, pseudo-conformal blow-up
@article{JEMS_2008_10_4_a0,
author = {Jean Van Schaftingen},
title = {Estimates for $L^1$-vector fields under higher-order differential conditions},
journal = {Journal of the European Mathematical Society},
pages = {867--882},
year = {2008},
volume = {10},
number = {4},
doi = {10.4171/jems/133},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/133/}
}
TY - JOUR AU - Jean Van Schaftingen TI - Estimates for $L^1$-vector fields under higher-order differential conditions JO - Journal of the European Mathematical Society PY - 2008 SP - 867 EP - 882 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/133/ DO - 10.4171/jems/133 ID - JEMS_2008_10_4_a0 ER -
Jean Van Schaftingen. Estimates for $L^1$-vector fields under higher-order differential conditions. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 867-882. doi: 10.4171/jems/133
Cité par Sources :