On the global regularity of subcritical Euler–Poisson equations with pressure
Journal of the European Mathematical Society, Tome 10 (2008) no. 3, pp. 757-769.

Voir la notice de l'article provenant de la source EMS Press

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ-law pressure, γ≥1, admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2x2 p-system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and density crosses an intrinsic critical threshold.
DOI : 10.4171/jems/129
Classification : 35-XX, 00-XX
Keywords: Euler–Poisson equations, Riemann Invariants, critical thresholds, global regularity
@article{JEMS_2008_10_3_a6,
     author = {Eitan Tadmor and Dongming Wei},
     title = {On the global regularity of subcritical {Euler{\textendash}Poisson} equations with pressure},
     journal = {Journal of the European Mathematical Society},
     pages = {757--769},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2008},
     doi = {10.4171/jems/129},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/129/}
}
TY  - JOUR
AU  - Eitan Tadmor
AU  - Dongming Wei
TI  - On the global regularity of subcritical Euler–Poisson equations with pressure
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 757
EP  - 769
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/129/
DO  - 10.4171/jems/129
ID  - JEMS_2008_10_3_a6
ER  - 
%0 Journal Article
%A Eitan Tadmor
%A Dongming Wei
%T On the global regularity of subcritical Euler–Poisson equations with pressure
%J Journal of the European Mathematical Society
%D 2008
%P 757-769
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/129/
%R 10.4171/jems/129
%F JEMS_2008_10_3_a6
Eitan Tadmor; Dongming Wei. On the global regularity of subcritical Euler–Poisson equations with pressure. Journal of the European Mathematical Society, Tome 10 (2008) no. 3, pp. 757-769. doi : 10.4171/jems/129. http://geodesic.mathdoc.fr/articles/10.4171/jems/129/

Cité par Sources :