Lieb–Thirring inequalities on the half-line with critical exponent
Journal of the European Mathematical Society, Tome 10 (2008) no. 3, pp. 739-755
Cet article a éte moissonné depuis la source EMS Press
We consider a Schrödinger operator on the half-line with a Dirichlet boundary condition at the origin and show that moments of its negative eigenvalues can be estimated by the part of the potential that is larger than the critical Hardy weight. The estimate is valid for the critical value of the moment parameter.
Classification :
35-XX, 81-XX, 00-XX
Keywords: Schrödinger operator, Lieb–Thirring inequalities, Hardy inequality
Keywords: Schrödinger operator, Lieb–Thirring inequalities, Hardy inequality
@article{JEMS_2008_10_3_a5,
author = {Tomas Ekholm and Rupert L. Frank},
title = {Lieb{\textendash}Thirring inequalities on the half-line with critical exponent},
journal = {Journal of the European Mathematical Society},
pages = {739--755},
year = {2008},
volume = {10},
number = {3},
doi = {10.4171/jems/128},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/128/}
}
TY - JOUR AU - Tomas Ekholm AU - Rupert L. Frank TI - Lieb–Thirring inequalities on the half-line with critical exponent JO - Journal of the European Mathematical Society PY - 2008 SP - 739 EP - 755 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/128/ DO - 10.4171/jems/128 ID - JEMS_2008_10_3_a5 ER -
Tomas Ekholm; Rupert L. Frank. Lieb–Thirring inequalities on the half-line with critical exponent. Journal of the European Mathematical Society, Tome 10 (2008) no. 3, pp. 739-755. doi: 10.4171/jems/128
Cité par Sources :