Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\mathbb{R}^3$
Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 507-531.

Voir la notice de l'article provenant de la source EMS Press

We present a novel approach for bounding the resolvent of a Schroedinger operator with a large first-order perturbation. It is shown here that despite the size of the perturbation, its associated Born series is absolutely convergent at sufficiently high energies. This requires suitable smoothness and polynomial decay of the scalar and vector (magnetic) potentials.
DOI : 10.4171/jems/120
Classification : 35-XX, 42-XX, 00-XX
Keywords:
@article{JEMS_2008_10_2_a9,
     author = {M. Burak Erdo\u{g}an and Michael Goldberg and Wilhelm Schlag},
     title = {Strichartz and smoothing estimates for {Schr\"odinger} operators with large magnetic potentials in $\mathbb{R}^3$},
     journal = {Journal of the European Mathematical Society},
     pages = {507--531},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4171/jems/120},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/120/}
}
TY  - JOUR
AU  - M. Burak Erdoğan
AU  - Michael Goldberg
AU  - Wilhelm Schlag
TI  - Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\mathbb{R}^3$
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 507
EP  - 531
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/120/
DO  - 10.4171/jems/120
ID  - JEMS_2008_10_2_a9
ER  - 
%0 Journal Article
%A M. Burak Erdoğan
%A Michael Goldberg
%A Wilhelm Schlag
%T Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\mathbb{R}^3$
%J Journal of the European Mathematical Society
%D 2008
%P 507-531
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/120/
%R 10.4171/jems/120
%F JEMS_2008_10_2_a9
M. Burak Erdoğan; Michael Goldberg; Wilhelm Schlag. Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\mathbb{R}^3$. Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 507-531. doi : 10.4171/jems/120. http://geodesic.mathdoc.fr/articles/10.4171/jems/120/

Cité par Sources :