Sharp $L^1$ estimates for singular transport equations
Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 477-505.

Voir la notice de l'article provenant de la source EMS Press

We provide _L_1 estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time verifying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.
DOI : 10.4171/jems/119
Classification : 35-XX, 00-XX, 76-XX
@article{JEMS_2008_10_2_a8,
     author = {Sergiu Klainerman and Igor Rodnianski},
     title = {Sharp $L^1$ estimates for singular transport equations},
     journal = {Journal of the European Mathematical Society},
     pages = {477--505},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4171/jems/119},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/119/}
}
TY  - JOUR
AU  - Sergiu Klainerman
AU  - Igor Rodnianski
TI  - Sharp $L^1$ estimates for singular transport equations
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 477
EP  - 505
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/119/
DO  - 10.4171/jems/119
ID  - JEMS_2008_10_2_a8
ER  - 
%0 Journal Article
%A Sergiu Klainerman
%A Igor Rodnianski
%T Sharp $L^1$ estimates for singular transport equations
%J Journal of the European Mathematical Society
%D 2008
%P 477-505
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/119/
%R 10.4171/jems/119
%F JEMS_2008_10_2_a8
Sergiu Klainerman; Igor Rodnianski. Sharp $L^1$ estimates for singular transport equations. Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 477-505. doi : 10.4171/jems/119. http://geodesic.mathdoc.fr/articles/10.4171/jems/119/

Cité par Sources :