Symmetry of solutions of semilinear elliptic problems
Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 439-456.

Voir la notice de l'article provenant de la source EMS Press

We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate-value property for such functions.
DOI : 10.4171/jems/117
Classification : 35-XX, 00-XX
Keywords: Polarization, symmetrization, Steiner symmetrization, foliated Schwarz symmetrization, spherical cap symmetrization, quasi-continuous functions, intermediate value theorem, partial symmetry of solutions to semilinear elliptic equations, least-energy solut
@article{JEMS_2008_10_2_a6,
     author = {Jean Van Schaftingen and Michel Willem},
     title = {Symmetry of solutions of semilinear elliptic problems},
     journal = {Journal of the European Mathematical Society},
     pages = {439--456},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4171/jems/117},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/117/}
}
TY  - JOUR
AU  - Jean Van Schaftingen
AU  - Michel Willem
TI  - Symmetry of solutions of semilinear elliptic problems
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 439
EP  - 456
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/117/
DO  - 10.4171/jems/117
ID  - JEMS_2008_10_2_a6
ER  - 
%0 Journal Article
%A Jean Van Schaftingen
%A Michel Willem
%T Symmetry of solutions of semilinear elliptic problems
%J Journal of the European Mathematical Society
%D 2008
%P 439-456
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/117/
%R 10.4171/jems/117
%F JEMS_2008_10_2_a6
Jean Van Schaftingen; Michel Willem. Symmetry of solutions of semilinear elliptic problems. Journal of the European Mathematical Society, Tome 10 (2008) no. 2, pp. 439-456. doi : 10.4171/jems/117. http://geodesic.mathdoc.fr/articles/10.4171/jems/117/

Cité par Sources :